研究方向
(1)多源固废资源化利用技术与装备研发
以典型有机固体废弃物,如城市污泥、生活/餐厨垃圾、厌氧沼渣、咖啡/茶渣、农林生物质废弃物、畜禽养殖废弃物,和危险废弃物,如生活垃圾焚烧飞灰、电子垃圾、油泥、二次铝灰等为主要处置对象,研发其无害化处理与低碳协同资源转化的关键核心技术和配套装备,提供系统解决方案。
(2)多功能炭材料开发与应用
基于材料结构演变与调控、表界面传质过程与反应、竞争效应等基础研究,以活性炭为基础,协同复合石墨烯、活性碳纤维、纳米零价铁/银等材料,开发面向水/气净化、食品、医药、5G电子、柔性电子、储能、日常生活等领域应用的各种炭基新材料;以生物炭为载体,开发功能性环境材料、土壤固碳减排与自净材料等。
(3)新污染物降解与新塑料合成
从环境中筛选优化功能微生物,通过富集、驯化、基因工程等途径实现特定微生物的功能增强,用于水体和土壤环境中微塑料、抗生素等新污染物的降解,以及将废油脂、解聚废塑料生物合成可降解塑料PHA等。
(4)机器学习赋能固废低碳转化
机器学习助力有机固废(废塑料、生物质、高湿固废)向高品质能源和先进碳材料的低碳高效转化,包括机器学习的模型建立及基于模型的工艺/系统优化、环境功能材料的设计/筛选以及全生命周期评估。
(5)退役新能源器件关键资源循环再生
以典型退役新能源器件,如废弃光伏组件、风机、动力电池及储能相关贵金属催化剂等为处置对象,重点研发其中战略金属、晶体硅等高效绿色提取关键材料与技术,为退役新能源器件关键资源回收提供集成创新方案。
研究组成员
研究组长:
汪印 研究员 (yinwang@iue.ac.cn; https://orcid.org/0000-0002-8727-464X)
副研究员:
邹晓燕 (xyzou@iue.ac.cn; https://www.researchgate.net/profile/Xiaoyan-Zou-5)
刘学蛟 (xjliu@iue.ac.cn;https://orcid.org/0000-0002-8387-8737)
助理研究员:
李智伟 (zwli@iue.ac.cn;https://www.researchgate.net/profile/Zhiwei-Li-51)
李杰 (lijie1@iue.ac.cn;https://orcid.org/0000-0001-7969-4997)
潘兰佳 (panlanjia@iue.ac.cn; https://www.researchgate.net/profile/Lan-Jia-Pan)
研究实习员:
潘蓓蓓 (bbpan@iue.ac.cn)
博士后:
许新海 (xhxu@iue.ac.cn;https://www.researchgate.net/profile/Xinhai-Xu-2)
Riaz Ahmad (riaz@iue.ac.cn;https://www.researchgate.net/profile/Riaz-Ahmad-8)
工程师:
代敏、邱胜、陈坤镇、陆青
在读博士研究生:
李智伟、余迪、王文萱、刘涛、POONNAWIT HANPHAIBOON、姚维昊、薛强、孟文巧、方青
在读硕士研究生:
刘太洋、余浩、吴雨桐、杨家豪、王强、王海龙、亢世雷、WARDAH HAYAT KHAN、黄静歆
承担的主要课题
1.福建省科技重大专项专题项目,生活垃圾焚烧飞灰与污泥及厌氧沼渣协同资源化利用关键技术,2023YZ038009,2023年06月01日-2026年05月31日
2.福建省中科院STS计划配套项目,2023T31020063,造纸厂多源固废协同资源化技术研发,2023年01月01日-2025年12月31日
3.中央引导地方科技发展资金项目,2023T3032,市政污泥智能化高压脱水耦合热解炭化制备生物炭及炭基功能材料研发,2023年01月01日-2025年12月31日
4.福建省引导项目,制革含铬污泥与皮革废料协同处置资源化关键技术研究,2023Y0074,2023年01月01日-2025年12月31日
5.中国科学城市环境研究所“揭榜挂帅”项目,典型城市固废热化学资源转化关键技术与装备,2023年01月01日-2025年10月31日
6.中国科学院特别研究助理资助项目,机器学习助力化石原料基废塑料热催化定向解聚,2023年01月01日-2024年12月31日
7.福建省自然科学基金,生物炭基固化降解菌剂强化土壤中生物塑料降解机理研究,2022J01510,2022年08月01日-2025年08月01日
8.福建省科技计项目(STS 计划配套项目),柔性电路板孔金属化关键材料研发,2022T3065,2022年03月01日-2025年03月01日
9.福建省科技计划项目(引导性项目),热解耦合改性生物炭资源化利用技术研究,2022Y0080,2022年03月01日-2025年02月28日
10.ANSO联合研究合作专项,东南亚国家生物质废弃物资源化永续发展的技术研发和应用示范,ANSO-CR-KP-2021-08,2021年12月01日-2024年12月01日
11.2021年度“一带一路”暨发展中国家科技培训班计划,2021年东盟地区生物质废弃物资源化利用技术与产业化应用培训班,2021年11月15-27日
12.福建省科技计项目(STS 计划配套项目),柔性电磁屏蔽及抗静电材料研发,2021T3037,2021年08月01日-2024年08月01日
13.福建省科技计项目(STS 计划配套项目),鸡粪生物炭基肥料的研发与应用示范,2021T3049,2021年08月01日-2024年08月01日
14.福建省科技计划项目(引导性项目),活性炭基银掺杂硫化纳米零价铁深度净水技术研发,2021Y0069,2021年08月01日-2024年08月01日
15.福建省科技计项目(STS 计划配套项目),餐厨垃圾与污泥协同资源化技术研发,2020T3036,2020年08月01日-2023年07月30日
16.中国科学院特别研究助理资助项目,高效去除低浓度新兴有机污染物的活性炭基净水材料的研发,2020年01月01日-2021年12月31日
17.中国科学院工程实验室项目,中国科学院城市固体废弃物资源化技术工程实验室,KFJ-PTXM-026,2020年01月01日-2022年12月31日
18.福建省科技计划项目, 柔性石墨烯活性炭基高性能电磁屏蔽复合材料关键技术开发 ,2019H0056,2019年07月01日-2022年06月30日
19.中国科学院战略性先导科技专项(A类),大湾区有机固废循环利用关键技术装备研发与工程示范,XDA23030301,2019年1月1日-2023年12月31日
20.2018年度“一带一路”暨发展中国家科技培训班计划,东南亚城乡生物质废弃物综合利用技术与示范培训班,2018年10月20-31日
21.国家重点研发计划政府间国际科技创新合作重点专项,城市污泥与餐厨垃圾协同资源回收技术研发与示范,2016YFE0118000,2016年12月26日-2019年11月26日
22.国家自然科学基金青年项目,天然有机质介导的醌呼吸过程对纳米银环境行为的影响机制,41503098,2016年1月-2018年12月
23.中国科学院重点部署项目,城市污泥制备生物炭成套技术与示范,KZZD-EW-16,2013年06月01日-2016年06月30日
代表性学术论文 (#共同第一作者,*通讯作者)
(1) 多源固废资源化利用技术与装备研发
1.Yu, D., Li, Z., Li, J., Li, B., Yu, H., He, J., & Wang, Y.* (2024). Role of municipal solid waste incineration fly ash components in co-pyrolysis of oily sludge: Pyrolysis products and catalytic mechanism. Journal of Hazardous Materials, 134368. https://doi.org/10.1016/j.jhazmat.2024.134368
2.Yu, D., Li, Z., Li, J., He, J., Li, B., & Wang, Y.* (2024). Enhancement of H2 and light oil production and CO2 emission mitigation during co-pyrolysis of oily sludge and incineration fly ash. Journal of Hazardous Materials, 462, 132618.https://doi.org/10.1016/j.jhazmat.2023.132618
3.Li, Z., Yu, D., Wang, X., Liu, X., Xu, Z., & Wang, Y.* (2024). A novel strategy of tannery sludge disposal–converting into biochar and reusing for Cr (VI) removal from tannery wastewater. Journal of Environmental Sciences, 138, 637-649. https://doi.org/10.1016/j.jes.2023.04.014
4.Li, Z., Yu, D., Liu, X., & Wang, Y.* (2023). The fate of heavy metals and risk assessment of heavy metal in pyrolysis coupling with acid washing treatment for sewage sludge. Toxics, 11(5), 447. https://doi.org/10.3390/toxics11050447
5.Li, C. #, Li, J. #, Xie, S., Zhang, G., Pan, L., Wang, R., & Angelidaki, I. (2022). Enhancement of heavy metal immobilization in sewage sludge biochar by combining alkaline hydrothermal treatment and pyrolysis. Journal of Cleaner Production, 369, 133325. https://doi.org/10.1016/j.jclepro.2022.133325
6.Wang, X., Chang, V. W. C., Li, Z., Chen, Z., & Wang, Y.* (2021). Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals. Journal of Hazardous Materials, 412, 125200. https://doi.org/10.1016/j.jhazmat.2021.125200
7.林佳佳,邹晓燕*, 王玉, 汪印. 污泥辅助飞灰水热-热解处置产物制备陶粒, 环境工程学报, (2021), 15(8): 2730-2739
8.Chen, Z., Yu, G., Wang, Y.*, & Wang, X. (2020). Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process. Waste Management, 109, 28-37. https://doi.org/10.1016/j.wasman.2020.04.048
9.Chen, Z., Yu, G., Zou, X., & Wang, Y.* (2020). Co-disposal of incineration fly ash and sewage sludge via hydrothermal treatment combined with pyrolysis: Cl removal and PCDD/F detoxification. Chemosphere, 260, 127632. https://doi.org/10.1016/j.chemosphere.2020.127632
10.Wang, X., Li, C., Li, Z., Yu, G., & Wang, Y.* (2019). Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicology and Environmental Safety, 168, 45-52. https://doi.org/10.1016/j.ecoenv.2018.10.022
11.Li, C., Wang, X., Zhang, G., Li, J., Li, Z., Yu, G., & Wang, Y.* (2018). A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification. Bioresource Technology, 254, 187-193. https://doi.org/10.1016/j.biortech.2018.01.045
12.Li, C., Wang, X., Zhang, G., Yu, G., Lin, J., & Wang, Y.* (2017). Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Research, 117, 49-57. https://doi.org/10.1016/j.watres.2017.03.047
(2)多功能炭材料开发与应用方向
1.Xu, Q., Lai, D., Xing, Z., Liu, X., & Wang, Y.* (2023). Strengthened removal of emerging contaminants over S/Fe codoped activated carbon fabricated by a mild one-step thermal transformation scheme. Chemosphere, 310, 136897. https://doi.org/10.1016/j.chemosphere.2022.136897
2.Wang, G., Lai, D., & Wang, Y.* (2023). Flexible, Robust, and Lightweight Multilayered Films Consisting of Alternating Poly (vinyl amine)/Nanofibrillated Cellulose and Porous Graphene Layers for Efficient Electromagnetic Interference Shielding. ACS Applied Nano Materials, 6(12), 10646-10657. https://doi.org/10.1021/acsanm.3c01601
3.Ndagijimana, P., Liu, X.*, Xu, Q., Li, Z., Pan, B., Liao, X., & Wang, Y.* (2022). Nanoscale zero-valent iron/silver@ activated carbon-reduced graphene oxide: Efficient removal of trihalomethanes from drinking water. Science of the Total Environment, 839, 156228. https://doi.org/10.1016/j.scitotenv.2022.156228
4.Xu, Q., Liu, X.*, Lai, D., Xing, Z., Ndagijimana, P., Li, Z., & Wang, Y.* (2022). One-step synthesis of nanoscale zero-valent iron modified hydrophobic mesoporous activated carbon for efficient removal of bulky organic pollutants. Journal of Cleaner Production, 356, 131854. https://doi.org/10.1016/j.jclepro.2022.131854
5.Liu, X., Xu, Q., Li, Z., Pan, B., Ndagijimana, P., & Wang, Y.* (2022). Simultaneous removal of cationic heavy metals and arsenic from drinking water by an activated carbon supported nanoscale zero-valent iron and nanosilver composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129581. https://doi.org/10.1016/j.colsurfa.2022.129581
6.Ndagijimana, P., Liu, X.*, Xu, Q., Li, Z., Pan, B., & Wang, Y.* (2022). Simultaneous removal of ibuprofen and bisphenol A from aqueous solution by an enhanced cross-linked activated carbon and reduced graphene oxide composite. Separation and Purification Technology, 299, 121681. https://doi.org/10.1016/j.seppur.2022.121681
7.Wang, G., Lai, D., Xu, X., & Wang, Y.* (2022). Lightweight, stiff and Heat-Resistant Bamboo-Derived carbon scaffolds with gradient aligned microchannels for highly efficient EMI shielding. Chemical Engineering Journal, 446, 136911. https://doi.org/10.1016/j.cej.2022.136911
8.Lai, D., Chen, X., Xu, X., Wang, G., & Wang, Y.* (2022). Elastomeric foldable and high-temperature endurance porous graphene films with superior electromagnetic interference shielding performance. Industrial & Engineering Chemistry Research, 61(2), 1122-1132. https://doi.org/10.1021/acs.iecr.1c04201
9.Lai, D., Chen, X., Wang, G., Xu, X., & Wang, Y.* (2022). Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon, 188, 513-522. https://doi.org/10.1016/j.carbon.2021.12.047
10.Ndagijimana, P., Liu, X.*, Li Z., Xing, Z., Pan, B., Yu G., Wang, Y.* (2021). Adsorption performance and mechanisms of mercaptans removal from gasoline oil using core-shell AC-based adsorbents. Environmental Science and Pollution Research. 28, 67120–67136. https://doi.org/10.21203/rs.3.rs-326696/v1
11.Ndagijimana, P., Liu, X., Li Z., Yu G., & Wang, Y.* (2020). The synthesis strategy to enhance the performance and cyclic utilization of granulated activated carbon-based sorbent for bisphenol A and triclosan removal. Environmental Science and Pollution Research. 13, 15758-15771. https://doi.org/10.1007/s11356-020-08095-7
12.Liu, X., Lai, D., & Wang, Y.* (2019). Performance of Pb (II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. Journal of Hazardous Materials, 361, 37-48. https://doi.org/10.1016/j.jhazmat.2018.08.082
13.Liu, X., & Wang, Y.* (2019). Activated carbon supported nanoscale zero-valent iron composite: aspects of surface structure and composition. Materials Chemistry and Physics, 222, 369-376. https://doi.org/10.1016/j.matchemphys.2018.10.013
14.Ndagijimana, P.#, Liu, X.#, Yu G., & Wang, Y.* (2019). Synthesis of a novel core-shell-structure activated carbon material and its application in sulfamethoxazole adsorption. Journal of Hazardous Materials, 368, 602-612. https://doi.org/10.1016/j.jhazmat.2019.01.093
(3)新污染物降解与新塑料合成
1.邹晓燕*, 曹凯博, 王强, 汪印. 鸡粪生物炭施用影响聚乳酸微塑料污染的酸性土壤质量, 农业环境科学学报, (2024), 43(4): 866-873
2.Pan, L.#, Li, J.#, Wang, R., Wang, Y., Lin, Q., Li, C., & Wang, Y.* (2021). Biosynthesis of polyhydroxyalkanoate from food waste oil by Pseudomonas alcaligenes with simultaneous energy recovery from fermentation wastewater. Waste Management, 131, 268-276. https://doi.org/10.1016/j.wasman.2021.06.008
3.潘兰佳,李杰,林清怀,汪印*. 贪铜菌利用混合餐厨废油合成聚羟基丁酸酯,生物技术通报, (2021), 37(4):127-136
4.潘兰佳,李杰,林清怀,汪印*. 废油脂生物合成聚羟基脂肪酸酯的研究进展,生物技术通报, (2020), 36(7):190-199
5.Zou, X. Y., Li, P. H., Wang, X. D., Zheng, S. H., Dai, F. Q., Zhang, H. W. * (2020). Silver nanoparticle and Ag+-induced shifts of microbial communities in natural brackish waters: Are they more pronounced under oxic conditions than anoxic conditions? Environmental Pollution, 258, 113686. https://doi.org/10.1016/j.envpol.2019.113686
6.Pan, L. J., Li, J., Li, C. X., Yu, G. W., & Wang, Y.* (2018). Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. Journal of Hazardous Materials, 343, 59-67. https://doi.org/10.1016/j.jhazmat.2017.09.009
7.Pan, L. J., Tang, X. D., Li, C. X., Yu, G. W., & Wang, Y.* (2017). Biodegradation of sulfamethazine by an isolated thermophile–Geobacillus sp. S-07. World Journal of Microbiology and Biotechnology, 33, 1-8. https://doi.org/10.1007/s11274-017-2245-2
(4)机器学习赋能固废低碳转化方向
1.Li J. #,*, Pan L. #, Huang Y., Liu X., Ye Z., Wang Y., (2024) Biochar design for antibiotics adsorption via a hybrid machine-learning-based optimization framework, Separation and Purification Technology, 127666. https://doi.org/10.1016/j.seppur.2024.127666
2.Withana, P. A.#, Li, J.#, Senadheera, S. S., Fan, C., Wang, Y., & Ok, Y. S.* (2024). Machine learning prediction and interpretation of the impact of microplastics on soil properties. Environmental Pollution, 341, 122833. https://doi.org/10.1016/j.envpol.2023.1228
3.Li, J.*, Yu, D., Pan, L., Xu, X., Wang, X., & Wang, Y.* (2023). Recent advances in plastic waste pyrolysis for liquid fuel production: Critical factors and machine learning applications. Applied Energy, 346, 121350. https://doi.org/10.1016/j.apenergy.2023.121350
4.Li, J.*, #, Pan, L., Li, Z., & Wang, Y.* (2023). Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. Science of the Total Environment, 885, 163895. https://doi.org/10.1016/j.scitotenv.2023.163895
5.Yuan, X. #, Li, J. #, Lim, J. Y., Zolfaghari, A., Alessi, D. S., Wang, Y., ... & Ok, Y. S.* (2023). Machine learning for heavy metal removal from water: recent advances and challenges. ACS ES&T Water. 2024, 4, 3, 820–836. https://doi.org/10.1021/acsestwater.3c00215
6.Shi, L. #, Li, J. #, Palansooriya, K. N., Chen, Y., Hou, D., Meers, E., ... & Ok, Y. S.* (2023). Modeling phytoremediation of heavy metal contaminated soils through machine learning. Journal of Hazardous Materials, 441, 129904. https://doi.org/10.1016/j.jhazmat.2022.129904
7.Palansooriya, K. N.#, Li, J.#, Dissanayake, P. D., Suvarna, M., Li, L., Yuan, X., ... & Ok, Y. S.* (2022). Prediction of soil heavy metal immobilization by biochar using machine learning. Environmental Science & Technology, 56(7), 4187-4198. https://doi.org/10.1021/acs.est.1c08302
8.Li, J.#, Zhang, L., Li, C., Tian, H., Ning, J., Zhang, J., ... & Wang, X.* (2022). Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production. ACS ES&T Engineering, 2(4), 642-652. https://doi.org/10.1021/acsestengg.1c00316
9.Li, J., Pan, L., Suvarna, M., & Wang, X.* (2021). Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chemical Engineering Journal, 426, 131285. https://doi.org/10.1016/j.cej.2021.131285
10.Li, J., Zhang, W., Liu, T., Yang, L., Li, H., Peng, H., ... & Leng, L.* (2021). Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chemical Engineering Journal, 425, 130649. https://doi.org/10.1016/j.cej.2021.130649
(5)退役新能源器件关键资源循环再生
1.Wang, W., Xu, X.*, Lai, D., Xu, Q., Li, J., & Wang, Y.* (2024). Selective isolation of gallium and indium from waste photovoltaic modules facilitated by extractant-mesoporous activated carbon composites. Separation and Purification Technology, 330, 125510. https://doi.org/10.1016/j.seppur.2023.125510
2.Xu, X., Lai, D., Wang, W., & Wang, Y.* (2022). A systematically integrated recycling and upgrading technology for waste crystalline silicon photovoltaic module. Resources, Conservation and Recycling, 182, 106284. https://doi.org/10.1016/j.resconrec.2022.106284
3.Xu, X., Lai, D., Wang, G., & Wang, Y.* (2021). Nondestructive silicon wafer recovery by a novel method of solvothermal swelling coupled with thermal decomposition. Chemical Engineering Journal, 418, 129457. https://doi.org/10.1016/j.cej.2021.129457
代表性专利成果
1.汪印,李智伟,林佳佳,赖登国,刘学蛟,王兴栋,潘蓓蓓, 一种制革含铬污泥无害化资源化利用方法及装置,发明专利,CN202111480174.9
2.汪印,李智伟,余迪,赖登国,洪辰毅,刘学蛟,潘蓓蓓, 一种油泥与飞灰协同无害化资源化处置的方法, 发明专利, CN202210261674.1
3.汪印,李智伟,张骏,邢贞娇, 一种层状二硅酸锶及其制备方法和应用, 发明专利, CN201910614754.9
4.汪印,许新海,赖登国, 一种实现硅片完整性回收的废弃光伏组件拆解方法, 发明专利, CN201910922201.X
5.汪印,李智伟, 一种污泥热解生物炭的资源化利用方法, 发明专利, CN201910615263.6
6.汪印,余广炜,李春星,王兴栋,李智伟,邢贞娇,李杰, 一种病死禽畜资源化利用方法及其设备, 发明专利, CN201510747024.8
7.汪印,王兴栋,邢贞娇, 一种车载式秸秆粉碎与炭化一体装置, 发明专利, CN201420221308.4
8.汪印,余广炜,王兴栋,李智伟,唐晓达,李春星一种污泥与餐厨垃圾的处理方法, 发明专利, CN201610460139.3
9.汪印,邢贞娇,李永彬, 一种生物质的自热式连续炭化活化加工方法及其装置, 发明专利, CN201210379290.6
10.汪印,刘学蛟, 一种负载石墨烯的活性炭复合材料及其制备方法, 发明专利, CN201710266089.X
11.汪印,刘学蛟,赖登国, 一种缓释型碳基抗菌抗病毒复合材料及其制备方法和应用, 发明专利, CN202010874986.0
12.汪印,刘学蛟,李智伟,赖登国,黄绍祥,姜俊,邓蕾玲, 一种用于家具喷涂中挥发性有机废气的处理装置, 实用新型专利, CN202221926750.8
13.刘学蛟,汪印,潘蓓蓓,李智伟,徐清馨, 一种铁磁性碳基复合材料及其制备方法与应用, 发明专利, CN202111031165.1
14.刘学蛟,汪印,赖登国,蒋永锋, 一种活性炭基材料及其制备方法和用途, 发明专利, CN202110227364.3
15.刘学蛟,汪印,潘蓓蓓,李智伟,徐清馨, 一种活性炭基复合滤芯, 实用新型专利, CN202021142711.X
16.潘兰佳,汪印,李杰,林清怀, 一种产碱假单胞菌Pseudomonas sp.H3,筛选方法及用途, 发明专利, CN202010460774.8
17.许新海,赖登国,汪印. 一种废弃光伏组件循环再利用的方法, 发明专利, CN202111149181.0
18.赖登国,汪印,陈笑笑, 一种具有自修复功能的电磁屏蔽材料及其制备方法和应用, 发明专利, CN202111055299.7
19.赖登国,汪印,陈笑笑,许新海, 单层褶皱石墨烯及其制备方法和用, 发明专利, CN201910767805.1
20.赖登国,许新海,汪印, 一种用于制备单层石墨烯的装置系统、单层石墨烯及其制备方法, 发明专, CN202110930544.8
21.唐晓达,汪印,余广炜, 一种恶臭假单胞菌Pseudomonas putida WP07、制备方法及用途, 发明专利, CN201910567313.8
22.李春星,汪印,李杰,余广炜, 一种餐厨垃圾厌氧发酵沼渣减量化资源化的方法及其装置, 发明专利, CN201711191510.1
成果转化情况
依托国家863项目研发的富含纤维素生物质废物制备多孔功能材料的成套技术与装备已经在石家庄、湖北、黑龙江、江西、福建、浙江、江苏、安徽等地实现产业化应用;依托国家科技支撑项目研发的生物质热解气化成套技术与装备在泸州老窖、宛西制药建立了示范工程;依托中国科学院和科技部支持研发的城市污泥/餐厨垃圾热解炭化技术在福建、广东、深圳、天津、浙江等地建立了示范工程。团队研发成果“生物质废弃物的炭转化成套技术研发与产业化应用”获得厦门市2020年度科技进步一等奖和2022年度福建省科技进步三等奖(第一完成单位)。