Climate-driven decline in water level causes earlier onset of hypoxia in a subtropical reservoir
Huihuang Chen , Anqi Luo , Chenxi Mi , Yifan Lu , Yuanyuan Xue , Lei Jin , Hongteng Zhang , Jun Yang*
Hypoxia, especially in the bottom water, is occurring in deep and stratified reservoirs worldwide, threatening aquatic biodiversity, ecosystem functions and services. However, little is known about the timing of onset and ending of hypoxia, especially in subtropical reservoirs. Based on five-year (from April 2015 to January 2020) sampling of a subtropical monomictic deep reservoir (Tingxi Reservoir) in southeast China, we found the evidence of about 40 days earlier onset of hypolimnion hypoxia during low water level periods in dry years compared to wetter high water level years. We explored the effects of stratification and mixing conditions on hypoxia, cyanobacterial biomass, and nutrient dynamics; and revealed the physical and biochemical conditions that drove hypoxia. The results indicated that 1) The decline in water level increased the intensity of thermal stratification, resulting in 40 days earlier onset of hypolimnion hypoxia in dry years than in wet years; 2) The decline in water level expanded the extent of hypoxia by promoting nutrient accumulation and phytoplankton biomass growth; 3) Warmer climate and less precipitation (drought) significantly promoted the risk of hypoxic expansion and endogenous phosphorus release in subtropical reservoirs. We suggest that more attention needs to be paid to the early onset of hypoxia and its consequences on water quality in subtropical stratified reservoirs during low water level periods in a changing climate.
Key words:Climate change;Monomictic reservoir;Thermal stratification;Mixing;Phytoplankton
Volume:267
Page:122445
Journal:Water Research