Haloacetic acids (HAAs) are ubiquitous in drinking water and have been associated with impaired male reproductive health. However, epidemiological evidence exploring the associations between HAA exposure and reproductive hormones among males is scarce. In the current study, the urinary concentrations of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the internal exposure markers of HAAs, as well as sex hormones (testosterone [T], progesterone [P], and estradiol [E2]) were measured among 449 Chinese men. Moreover, in vitro experiments, designed to simulate the real-world scenarios of human exposure, were conducted to assess testosterone synthesis in the Leydig cell line MLTC-1 and testosterone metabolism in the hepatic cell line HepG2 in response to low-dose HAA exposure. The DCAA and TCAA urinary concentrations were found to be positively associated with urinary T, P, and E2 levels (all p < 0.001), but negatively associated with the ratio of urinary T to E2 (p < 0.05). Combined with in vitro experiments, the results suggest that environmentally-relevant doses of HAA stimulate sex hormone synthesis and steroidogenesis pathway gene expression in MLTC-1 cells. In addition, the inhibition of the key gene CYP3A4 involved in the testosterone phase Ⅰ catabolism, and induction of the gene UGT2B15 involved in testosterone phase Ⅱ glucuronide conjugation metabolism along with the ATP-binding cassette (ABC) transport genes (ABCC4 and ABCG2) in HepG2 cells could play a role in elevation of urinary hormone excretion upon low-dose exposure to HAAs. Our novel findings highlight that exposure to HAAs at environmentally-relevant concentrations is associated with increased synthesis and excretion of sex hormones in males, which potentially provides an alternative approach involving urinary hormones for the noninvasive evaluation of male reproductive health following exposure to DBPs