For a potential and efficient solution in the mitigation of aquatic pollution, this study reported a well-designed and developed protected granulated activated carbon (GAC) material which ensures high strength property and adsorption performance to meet the industrial application. The prepared GAC material was shaped into a spherical core using natural binders basically assumed to constitute waste solids materials. Then after, the granulated carbon core (GAC core) was protected by a porous ceramic shell which confined the material with strong protection and high mechanical strength to resist against degeneration and pressure drop as a limiting factor for most sorbents employed in solution. The CSGAC characterization results proved that the ceramic shell has a smaller thickness (0.1 cm), good mechanical strength (2.0 MPa), and additionally, it presents larger porous channels which promote the fast and higher adsorption performance making it the desired material for the application in the real liquid environment. The test results showed that the prepared material had higher removal of triclosan (TCS) (30–40 mg/L) than BPA counterpart from the aqueous solutions. Moreover, it showed higher adsorption performance compared to the unprotected carbon materials. Furthermore, the mechanisms of BPA and TCS adsorption by core-shell granulated activated carbon (CSGAC) were discussed.
GAC cores with different size of GAC (a–c), compressive strength (d), and removal efficiency on different CSGAC (e)