Tetracyclines (TCs) discharged from livestock wastewater have aroused public concerns due to their pharmacological threats to ecosystems and human health. As an important medium in the wastewater, suspended organic matters (SOMs) play vital roles in antibiotics transport and degradation. However, limited information has been reported in the relevant literature. This study investigated TCs sorption behavior on SOM, withdrawn from swine wastewater. High TCs sorption capacities were detected, with the maximum values ranging from 0.337 to 0.679 mg/g. Increasing pH and temperature led to the decline of sorption capacity. Results from three-dimensional excitation–emission matrix fluorescence spectroscopy and Fourier transform infrared spectrometry revealed that amide and carboxyl groups were the main functional groups for TCs adsorption. The interactions between SOM and TCs were clarified as predominated by hydrogen-bonding and cation-exchange in acid conditions, and electrostatic repulsion in neutral or alkaline conditions. Adsorption kinetics modeling was conducted, and a satisfactory fitting was achieved with the Freundlich equation. These results indicated that the adsorption process was a rather complex process, involving a combination of cation-exchange and hydrogen-bonding. The results will provide a better understanding of the capability of SOM for TCs transport and abatement in the wastewater treatment process.