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In the context of growing concerns over energy consumption and sustainability, accurate modelling of occupancy
patterns within residential buildings is critical. In this study, a novel stochastic occupancy model is introduced
for simulating human behaviour within residential buildings by employing Time Use Survey (TUS) data and
utilising Markov chains and probabilistic sampling algorithms. The novelty of this research lies in its approach to
represent the dynamic nature of occupancy across different functional spaces and age groups, a gap not yet
adequately addressed in existing studies. The model’s accuracy is ascertained through ten-fold cross-validation,
achieving an average R? value of 0.91 across key functional rooms (bedroom, bathroom, kitchen, living room),
indicating a high degree of precision. Applied to a case study of a two-story detached house in the UK, the model
effectively reflects varied behaviour patterns and room occupancy among different age groups. For instance, the
average daily appliance energy consumption for occupants aged 8-14 ranged from 0 to 3.77 kWh (median 1.71
kWh), for ages 15-64 from 0 to 4.93 kWh (median 2.61 kWh), and for over 65 from 0.87 to 5.65 kWh (median
3.60 kWh). This model, with its scalability and accuracy in capturing the inherent randomness of human
behaviour, is a valuable tool for improving energy consumption simulations and contributing to sustainable
residential building design and management.

1. Introduction in 2004 and 2013. Additionally, international standards such as

prEN16798-1 and ISO 17772-1:2017 have also addressed occupant

1.1. Background

Building energy consumption is a key parameter by which the per-
formance of the indoor environment can be assessed and improved, and
occupant behaviours are one of the drivers causing difference in build-
ing energy consumption among buildings with the same function and in
similar climatic conditions [1]. For this reason, the United States
Department of Energy (DOE) issued Standard Building Operating Con-
ditions (SBOC) in 1979 and defined occupancy schedules for 14 building
occupancy types [2,3]. In 1989, the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) issued the first
standard occupancy schedules for nine building occupancy types based
on the DOE SBOC standards (Fig. 1 a)), which were revised and refined
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schedules for energy calculations (Fig. 1 b)) [4].

However, these occupancy schedules were based on statistical re-
sults, and the descriptions of occupancy were static and simplified [5].
They fail to capture the temporal and spatial stochastic nature of oc-
cupancy, which is critical for accurately assessing energy consumption
in residential buildings. This limitation is particularly evident when
considering the diversity of occupancy patterns across different regions.
For instance, research conducted by Mitra et, al. showed that Canadians
are on average 6.6 % less actively occupied in residential buildings than
British [6]. Moreover, even within a single country, occupancy patterns
can vary widely. In China, for example, the time spent in living rooms
ranges from 10 to 11 h in Beijing to as little as 5.4 h in Yinchuan and 4.8
h in Chengdu [7]. These variations underscore the importance of
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developing occupancy models that can more accurately reflect the
diverse and dynamic nature of building occupancy.

The behaviour of occupants is one of the most important sources of
uncertainty in predicting building energy use through modelling pro-
cedures [1]. Given the diversity in individual behaviours, applying such
oversimplified schedules in building simulation often results in a sig-
nificant discrepancy between the simulated results and actual energy
consumption. For example, Duarte et, al. carried out a study in 2013
which showed a 46 % difference between private office and ASHRAE
reference occupancy rates [9]. Hong et, al. found that for a typical
single-person office room, different working styles could result in energy
consumption varying from 50 % less to 90 % more compared to the
standard or reference working style [1].

Many studies have shown that the use of occupancy information can
save around 10 % — 40 % of a building’s energy consumption [10].
Erickson and Cerpa indicated that HVAC control strategies with pre-
dictive and real-time occupancy monitoring via camera sensor networks
have a potential energy saving of 20 % [11]. Peng et, al. adaptation to
local occupancy scenarios can save 20.3 % of energy [12]. The expected
energy use simulated using sensors to detect occupancy and sleep pat-
terns in the home saves an average of 28 % of energy compared to
existing energy simulation methods [13].

1.2. Occupancy models

In recent years, researchers have done a number of studies to achieve
accurate building occupancy estimation. Back in 2001, Macdonald and
Strachan proposed using the Monte Carlo method to build a basic sto-
chastic model as inputs to simulation tools [14]. Nowadays, some
advanced models are proposed to randomly generate plausible building
occupancy models. Most of the research focuses on the types of public
buildings. For instance, Wang et, al. investigated the occupancy patterns
in single-person offices within a large office building in San Francisco.
Their study revealed that the vacancy intervals across the 35 single-
person offices involved in the study were exponentially distributed.
They demonstrated three typical occupancy models for these offices
using non-homogeneous Poisson process simulations [15]. However, the
findings, being limited to a single office building, raised questions about
their universal applicability. Addressing this limitation, Page et al.
introduced a more versatile approach using the Markov chain to simu-
late occupant presence. Their algorithm, implemented in Matlab, was
adaptable to both residential and public buildings, enabling the gener-
ation of occupancy statuses (absence or presence) in various zones over
different time series [16]. Further refining the focus on occupancy
modelling, Wang et, al. proposed an innovative approach that included a
basic movement module and an advanced event module. This model was
able to simulate not only the spatial location of each occupant but also
zone-level occupancy of the whole building [17]. Furthermore, a part of
the research focused on the generation or prediction of typical standard
occupancy models. Liang et, al. used data mining methods to learn and
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predict the occupancy schedule of a whole office building [18]. Happle
et, al. used location-based services (LBS) data to create occupancy
schedules of a retail or restaurant building use type in different cities and
compared them with standard schedules [3]. These studies highlighted
the potential of leveraging big data and advanced analytics in occupancy
modelling.

While the majority of earlier occupancy studies concentrated on
public buildings, there has been a notable shift towards residential oc-
cupancy models in recent times. This transition is characterized by the
increasing use of national-level Time Use Survey data and the Markov
chain as foundational methods in developing residential occupancy
models. For instance, Richardson et, al. developed a stochastic occu-
pancy model to describe the active or inactive states in the house using
the first-order Markov-Chain technique [19]. Building on this, McKenna
et, al. refined the approach with the first-order time-inhomogeneous
Markov-chain technique. This optimization allowed for modelling four
stochastic states of occupants (absent/present and active/inactive)
within a household [20]. Buttitta and Finn applied the first-order Mar-
kov-Chain technique to generate high-time resolution occupancy
models and used them as input parameters to calculate high-time reso-
lution heating load in buildings [21]. In addition to traditional survey
data, the use of monitoring data from household devices has emerged as
a valuable source for occupancy modelling. Huchuk et, al. utilised real
consumer longitudinal data from the connected thermostat devices to
predict household occupancy using different methods, including Logis-
tic regression, Markov model, Random Forest, Hidden Markov model
and Recurrent neural network. Their findings indicated that the Random
forest algorithm outperforms the other models [22]. Causone et al. took
a different approach by collecting energy metering data and employing
machine learning algorithms to infer occupant-related input data [23].
Similarly, Diao et, al. proposed to use direct energy consumption results
and energy time use data to identify and classify occupant behaviour
through unsupervised clustering. Their behavioural model offered more
accurate and reliable predictions than the ASHRAE standard schedule
[24]. Additionally, Sayed et, al. developed a simple and effective image
conversion technique for predicting occupancy [25]. These diverse
methodologies highlight the evolving complexity and precision in resi-
dential occupancy modelling. A detailed overview of the research
methods applied to different types of buildings is shown in Table 1
below.

With the increasing emphasis on the study of human behaviour in
buildings, many research efforts are being made to accurately capture
occupancy patterns and behaviours. We found that some studies for
building occupancy schedule use occupancy sensors, cameras, the pas-
sive infrared (PIR) sensor, radio frequency identification (RFID) in-
struments or other devices that can be used to collect occupancy data to
achieve the purpose of obtaining occupied data and for occupancy
prediction [10,40-42]. However, the data collected by this method is
limited to a small sample size and is difficult to apply to the entire res-
idential building due to the privacy issues involved for the occupants
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Fig. 1. A) An example of standard ASHRAE schedule for residential buildings [8] (Source: Section 13 of ASHRAE standard 90.1-1989); b) Hourly residential building

pattern for energy calculation.
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Table 1
An overview of the occupancy model generation methods.
Forecast Method/ Data source Description Ref.
object Algorithm
Commercial Non- Infrared sensor Proposed [15]
buildings homogeneous statistical

Poisson process
model

Markov Chain
Model

Homogeneous
Markov chain

Inhomogeneous
Markov chain

Inhomogeneous
Markov chain

Data mining

Generative
Adversarial
Network (GAN)

Feature scaled
extreme learning
machine (FS-ELM)
algorithm

Statistical
methods

The S-curve
method and the
probabilistic
methods

Movement
sensor

Experience

Real-Time
Locating
System (RTLS)

Wireless
camera

Sensors

Camera

CO,
concentration
data

Switch lighting
equipment
data

Questionnaire

properties of
single-person

office occupancy
Generated the [16]
occupancy status
(absence or

presence) of

occupants in

different time

series in the

zones

Modelled the [17]
location of

occupancy and

the building’s

zone-level

occupancy

Provided an [26]
adaptive

probabilistic

occupancy

prediction model
capturing the

actual behaviour

of open office

occupants and

zone-level

occupants with

high accuracy

Offered two [27]
stochastic

building

occupancy

models for multi-
residential

single-area and
multi-area

scenarios

respectively

Provided a [18]
building

occupancy

schedule

available in most

office buildings
Introduced [28]
methods to build
occupancy

model without

prior

assumptions

Developed an [29]
occupancy

simulator based

on a discrete-

time dynamic

model of real-

time carbon

dioxide

concentration
measurements
Determined five [30]
typical

occupancy

patterns through

analysis of 200
open-plan offices
Proposed [31]
prediction

formulas of

occurrence and

Table 1 (continued)
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Forecast Method/ Data source Description Ref.
object Algorithm
frequency for
activities inside
and outside the
office during the
workday
Adaptive neural- Sensor Estimated non- [32]
fuzzy inference monitoring residential
system (ANFIS) building
model occupancy
Retail or Statistical method Location-based Created a data- [3]
restaurant services (LBS) driven situation-
building data specific and
representative
occupancy
schedule for
different
building use
types
Airport The Bayesian Wi-Fi IPS data Predicted high- [33]
building model resolution
occupancy of the
airport
Large Recurrent neural Image sensors Predicted short/ [34]
exhibition network (RNN) and counting long-term real-
hall model with long devices time occupancy
short-term in exhibition
memory units events
(LSTM)
Laboratory The auto- Wireless sensor ~ Estimated the [35]
regressive hidden network number of
Markov model occupants in the
(ARHMM) laboratory
Residential Probabilistic TUS and Identified seven [36]
buildings model and the Household significant
Hierarchical Budget Survey occupancy
clustering (HBS) schedules and
algorithm reconstructed
individual daily
and annual
occupancy
Markov Chain Time-Use Generated the [19]
Monte Carlo Survey (TUS) stochastic
(MCMC) occupancy
technique (active/inactive)
in the house
Markov Chain Time-Use Modelled [20]
Monte Carlo Survey (TUS) occupant’s state
(MCMC) (absent/present
technique and active/

A new Markov
model

Machine learning
algorithms

Logistic
regression;
Markov model;
Random forest;
Hidden Markov
model;
Recurrent neural
network
Unsupervised
clustering; First-
order
inhomogeneous
Markov chain

Passive
infrared
sensors
Smart meters

Connected
thermostats

American Time
Use Survey
(ATUS)

inactive) in the

house

Predicted short- [37]
term occupancy

in the buildings
Generated [23]
standardized

occupancy

profiles using the
electricity

records from

smart meters

Generated [22]
household

occupancy

prediction

models; Random

forest algorithm
outperforms

other models

Identified ten [24]
occupant

behaviour model

(continued on next page)
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Table 1 (continued)

Forecast Method/ Data source Description Ref.
object Algorithm
First-order TUS data Generated high- [21]
Markov—Chain temporal
technique resolution
occupancy
model
Deep learning Sensors Developed a [25]
method to detect
building
occupancy
Generic data- Home energy Explored [38]
driven framework management occupant
(including system (HEMS) patterns and
clustering and presence
changepoint probabilities for
detection (CPD)) a set of
residential
buildings
Semi-Markov Smart Modelled annual [39]
chain mode thermostat occupancy
data schedules for

urban-scale

and the difficulty of installing the sensors without disturbing the occu-
pants’ activities [7].

As occupants of residential buildings often refuse direct data
collection by researchers or research institutions entering their homes,
several studies attempt to investigate behaviours through indirect data
sources. Fortunately, several countries conduct regular national-wide
time use surveys to gather information about household time use,
including time spent and appliance usage at home. Since 1996, The
Japan Bureau of Statistics has conducted a time use survey in every five
years [43]. American Time Use Survey, UK Time Use Survey (TUS) and
other time use surveys collect the amount of time people spend sleeping,
working at home, preparing food and other activities. This time-use data
helps to understand household activities and can be used to roughly
determine the locations of individuals in different rooms within the
residential buildings. Therefore, this type of data source aids in the
development of more accurate occupancy schedules for building
simulations.

2. Research aim and objectives

In summary, several probabilistic and data-driven approaches to
assessing occupancy levels of buildings have been established in recent
years. However, current occupancy forecasting methods have limita-
tions. First of all, most studies focus on public buildings, while there are
relatively few studies on residential buildings. For those who focus on
residential buildings, few have considered the occupancy of different
functional rooms in residential buildings. Given the prevailing use of
static schedules in building energy modelling for occupancy and the
predominant focus on public buildings like offices in existing studies of
occupancy schedules, this research aims to address the need for a sto-
chastic occupancy model in residential buildings. By utilising extensive
real data from TUS, this model captures the randomness of residents’
behaviours in residential buildings and dynamically quantifies the
probabilities of different groups of people being present in various
rooms at different times. It enables direct integration into building
simulations, thereby enhancing the accuracy of simulation outcomes to
closely align with real-world scenarios.

3. Methodology
The methodology employed in this study consists of three primary

components, and an overview of the methodology is given in Fig. 2. The
first part involves analytical processing of the TUS data. This data is
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carefully analysed and processed to extract relevant information about
residents’ activities, their durations, and the rooms they occupy within
residential buildings. A comprehensive examination of the TUS data
provides insights into occupant patterns and behaviours.

The second component utilises the extracted TUS data to construct
probabilistic transfer matrices and generate Markov chains. These
matrices capture the transition probabilities of occupants moving from
one room to another within a residential building. By leveraging these
transfer matrices, the stochastic nature of occupancy patterns over time
can be simulated. This enables the modelling of dynamic movements of
residents and their presence in different rooms at different time
intervals.

The third component involves the use of probabilistic sampling
models. These models enable the prediction of room occupancy within a
residential sample and the generation of occupant movements between
various spaces. By incorporating the probabilistic sampling method, the
inherent uncertainty and randomness in occupant behaviour are
accommodated.

Additionally, to validate the accuracy and reliability of our meth-
odology, we employed a rigorous validation process using 10-fold cross-
validation. The dataset was divided into ten subsets of approximately
equal size. In each iteration, nine subsets were used for training the
occupancy models, while the remaining subset was held out for testing.
This process was repeated ten times, with each subset serving as the test
set once.

3.1. Data Description and processing

To capture the stochastic nature of occupancy patterns in various
rooms, it is essential to have a database that records the activities of each
occupant with fine time granularity, such as ten-minute intervals.
Additionally, a sufficient sample size is crucial to ensure the represen-
tativeness and reliability of the data. TUS data sets from various coun-
tries are ideal for this purpose as they provide detailed and
comprehensive activity records. This study drew on data extracted from
the UK TUS conducted in 2014-2015. The data can be downloaded from
the Economic and Social Research Council (ESRC) website [44]. This
large-scale household-level survey, which examined how people used
their time, was conducted by the National Centre for Social Research
and the Northern Ireland Statistics and Research Agency on behalf of the
University of Oxford’s Centre for Time Use Research. The sample for the
UK TUS comprised households from England, Scotland, Wales and
Northern Ireland. A total of 4,238 family interviews were conducted
with 10,208 eligible respondents. These respondents completed 16,550
records of their daily routine, of which 16,533 contained valid data on
their daily behaviours. The data compiled include the participants’ basic
information, their locations and their activities. Each participant aged 8
years and above was provided with two 24-hour schedules and
instructed to record their activities at 10-minute intervals.

The analysis of the TUS data reveals a spectrum of twelve typical
activities that characterise the day-to-day life of a residential building
occupant. These include: sleeping, eating, personal care, employment-
related activities, studying, household and family care activities,
voluntary work and meetings, social life and entertainment, sports and
outdoor activities, hobbies and computing activities, mass media ac-
tivities and travelling. We assume that these activities occur in one of the
functional rooms within the building, such as the kitchen (including the
dining room), bathroom, bedroom, living room, or occur outside of this
building. To elaborate, during a specific 10-minute interval, an in-
dividual’s change in location can be classified into one of three types:
remaining static, transitioning from one room to another within the
building, or moving from an outdoor location to an indoor one. For
instance, when the occupant is engaged in eating or cooking, it is
associated with a change in location to the kitchen from either another
room within the building or from an outside location. Similarly, per-
sonal care activities correspond to the occupant’s change of location
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Fig. 2. Methodology flow chart.

from either inside or outside the building to the bathroom; sleep,
employment-related and study activities correspond to the occupant’s
change of location from either inside or outside the building to the
bedroom, and other activities correspond to the change of location from
either inside or outside the building to the living room. Table 2 presents
the typical activities of occupants and their corresponding functional
rooms.

Predicting energy consumption patterns in residential buildings
presents complex challenges due to the different behaviours of house-
holds, which are influenced by many factors [45,46]. Therefore, this
study considers factors that influence occupancy schedules, specifically

focusing on the age of occupants and differentiating between weekdays
and weekends. The amount of valid data on occupants is shown in
Table 3, and the TUS data is classified according to age groups: 8-14
years, 15-64 years and 65 years and above. This classification is in line
with the standardised statistical breakdown of the UK’s age distribution
from 2011 to 2021 as summarized by O’Neill [47].

3.2. The First-Order Markov—-Chain Monte Carlo method

Markov chain is a statistical method which has been widely used in
building occupancy modelling [17,26,46]. In this study, we utilised the
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Table 2
Examples of typical activities and corresponding functional rooms.

Activities Corresponding rooms

Sleeping Bedroom

Eating Kitchen (including the dining room)
Personal care Bathroom

Employment-related activities
Studying

Household and family care activities
Voluntary work and meetings

Social life and entertainment

Sports and outdoor activities
Hobbies and computing activities
Mass media activities

Travelling

Living room
Living room
Living room
Living room
Living room
Outdoor

Living room
Living room
Outdoor

Markov chain approach to construct a profile of the overall occupancy
within a residential building. It is used to model the sequences of an
occupant’s movements - specifically between being within or outside the
building. We adopted the concept of ’stochastic movement’, indicating
that the transitions of occupants between inside and outside states are
random and unpredictable. This movement of occupants forms the
foundation of our occupancy profile. This hypothesis allows the trans-
formation of occupants between inside and outside a residential building
to be modelled as a Markov chain process. Thus, the occupant’s subse-
quent occupancy status of the residential building depends only on his/
her current state and a certain probability which is defined based on
observed patterns in the data. To elaborate, in the First-Order Mar-
kov-Chain Monte Carlo method, the presence of occupants at a given
time step only depends on the presence of occupants at the previous time
step, taking into account factors such as the hour of the day and the day
of the week [6]. The process begins with a defined starting state. At each
time step, a random number within the interval [0,1] is generated. The
transition of the occupant’s state is then determined by comparing this
random number with the probabilities indicated in the transition
probability matrix, which links a given time step to a specific class [21].
This approach allows for the generation of data that accurately simulates
the unpredictable nature of occupancy movements within residential
spaces.

Markov chains are stochastic processes in the state space that un-
dergo transitions from one state to another. It is described in Eq. 1 that
the state of the next stage is only related to the state of the previous stage
and the probability of state change.

Pr(Xp=x|X1 =x1,X2 = X2, -, Xn = Xp) = Pr(Xn11= X|Xn = xz) (1)

For the First-Order Markov-Chain method, the previous state and the
probabilities of the state change, which are stored in a “transition
probability matrix (TPM) ” [19]. Transfer probabilities between states
with more than one step are more easily calculated by means of transfer
matrices [37]. At any time step t, the probability transition matrix is
denoted as [24]:

Table 3
Classification of sample respondents’ basic information.

Energy & Buildings 304 (2024) 113854
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Where, P! denotes the observed probability of transition from ac-
tivity i to activity j at time step t. It is the conditional probability of
activity j at time step t, given that activity i is at time step t — 1. The sum

of each row in the matrix is equal to 1. P is calculates as

Pl=2—(3)
¢ ZkAO’"k

where, Oj is the observed number of transitions from state i to state j,
O, is the observed number of transitions from state i to state k, and m is
the number of possible states.

The TUS data operates on a ten-minute interval basis. This means
that a full day’s active occupancy time series data for a specific house-
hold comprises 144 states. Each state signifies the likelihood of occu-
pants being present in the house during each ten-minute segment.
Consequently, 144 conversion matrices were created to represent the
transition of the occupancy situation in the household from time i to the
next time i + 1. The dimension of the transition probability matrix is 2 x
2, as shown in Fig. 3.

3.3. Probability sampling model

In the previous section, the overall occupancy of a residential house
was determined by the Markov chain method. However, to track the
occupancy patterns within various functional rooms in the house, a
more complex approach was necessary. The probability sampling model
was developed primarily on the basis of a probability distribution map of
historical presence which was calculated using TUS data. In this study,
we use this model to generate occupancy of different function rooms in
the household. Predictions are made by inverse sampling method during
periods when individuals were present in the rooms. The algorithm for
using probability sampling to predict presence is shown in Fig. 4. For
each time step in the day that needs to be predicted, the occupancy
status is determined by comparing the presence probability at that time

Next state (at time t+1)

Current state (at time t) Absence  Presence

Absence Pab s,abs P abs,pre

Presence P pre,abs P pre,pre

Fig. 3. Transition probability matrix at time t.

Background Groups Description Day Type Frequency Percentage (%)
Age Group 1 8-14 years Weekday 1016 6.15
Weekend 559 3.38
Group 2 15-64 years Weekday 7514 45.45
Weekend 4088 24.73
Group 3 65 years and over Weekday 2127 12.87

Weekend 1229 7.43
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spaces

Absence

Occupancy in
different function

Fig. 4. Flowchart for the probability sampling model.

step in the profile with a random number drawn from a uniform dis-
tribution. If the probability of occupancy surpasses the random number,
the respective time step is considered as “occupied.”. This method is
implemented using MATLAB.

3.4. Ten-fold cross-validation

In our study, we employ the ten-fold cross-validation method [48] to

assess the performance across six groups defined by age and weekdays/
weekends. Cross-validation is widely used as a statistical method to
evaluate generalization performance of models. This method repeatedly
divides the data into a training set and a test set for testing and training
respectively. Unlike a single split of the dataset into training and test
sets, which can lead to variability in model performance, cross-
validation provides a more stable and thorough assessment. k-fold
cross-validation is the most common cross-validation method, where k is
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Testing set  Trainingset 2-Fold
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Fig. 5. The procedure of ten-fold cross-validation method for Group 1 (age 8-14 years) on weekday.
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usually 5 or 10. In k steps, a set of data is retained as a test set and the
remaining data is used as a training set to train the model. The resulting
k accuracy scores are averaged and the cross-validation accuracy is
summarized into a performance metric for easy comparison [49].

In our case, we opt for ten-fold cross-validation. Fig. 5 illustrates the
procedural steps involved in the ten-fold cross-validation methodology.
The dataset is divided into ten folds, with each fold containing 10 % of
the data as the validation set, while the remaining data serves as the
training set. This approach allows a comprehensive evaluation of the
performance and generalizability of the proposed methodology within
each group. By evaluating the performance of the occupancy models
across multiple iterations, we were able to assess their consistency and
effectiveness in predicting room occupancy and occupant movements.

Four evaluation indexes, R2, root mean square error (RMSE), mean
absolute error (MAE), and median absolute error (MedAE), are used to
verify the proposed model, the definitions are described below.

The coefficient of determination (R%) indicates how well the pre-
dicted values in a model compare to a scenario where only the mean is
used. It is given by the formula for the sum of squared residuals as shown
below:

2 _ 72?: (Ergx)z
R =1 ey @
E = %Z?:lEi (5)

Where, E; denotes the actual data of occupants, E‘, denotes the
simulation results of occupants, E; is the is the average of the actual data,
n is the total number of those data.

RMSE is the mean of the square root of the error between the pre-
dicted value and the true value. It quantifies the typical size of the error
in the predictions, expressed in absolute units [18], expressed in the
following formula:

RMSE = /255 (g

For the perfect model, RMSE is equal to zero when the predicted
value exactly matches the true value, the larger the error, the larger the
value.

The Mean Absolute Error (MAE) is similar to the RMSE:

MAE = 21" 7El (7

For the perfect model, MAE is equal to zero when the predicted value
exactly matches the true value; the larger the error, the larger the value.

The MedAE indicates whether the model has a systematic tendency
to overestimate or underestimate. If the value of MedAE is 0, there is no
population bias in the prediction method. The equation is as following
[18]:

MedAE = median|E; 7151\ (8)

3.5. Estimating energy consumption associated with energy-related
behaviours

To contrast the standard ARSHRA occupancy schedule with the
stochastic occupancy model put forth in this research, we undertook a
comparative study, with a primary focus on energy-related behaviours
and the resultant energy consumption inherent to each schedule. The
concept of energy-related behaviours refers to those activities that
involve the direct use of energy. In the context of a residential setting,
these activities encompass the operation of various household appli-
ances such as televisions, washing machines, computers, microwave
ovens and the like. In essence, each of these appliances forms part of the
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daily energy consumption profile of a household, thereby establishing a
clear link between occupancy patterns, activities, and energy usage.

The energy consumption of these appliances can be determined by
[24]:

Egppliance = Pappliance % Activityduration (9)

where, Pgypiiance is the equivalent power of an active application de-
vice. The power of common household appliances, as shown in Table 4
[50], were carefully selected from a comprehensive dataset provided by
Generatorist. This dataset compiles power consumption data from a
variety of authoritative sources, including government websites and
well-known generator manufacturers such as Generac, Honda, and
Yamaha, as well as major retailers like Lowe’s, Home Depot, and Sears.
These sources offer a mix of average and typical usage values, making
the data robust and applicable to a wide range of residential buildings.
In our research, we assume that when a room is occupied, the energy
consumption can be estimated as the average energy usage of all ap-
pliances within that room. Specifically, in the context of a bedroom, we
consider the scenario where occupants primarily use the room for
sleeping, and hence, the only appliances accounted for are two elec-
tronic device chargers.

4. Verification the stochastic occupancy model

This section discusses in detail the accuracy of this stochastic model
in terms of ten-fold cross-validation. The generated occupancy data for

Table 4
The power consumption of household appliances[50].
KITCHEN APPLIANCES BATHROOM APPLIANCES LIVINGROOM
APPLIANCES
Household Watts Household Watts Household Watts
Appliances Appliances Appliances
Coffee Maker 1,000 Bathroom 60 W Apple TV 3W
w Towel Heater
Cooker Hood 20 W Clothes Dryer 5,400 AV Receiver 450
(Electric) w w
Dishwasher 1,500 Curling Iron 1,500 Computer 25W
w w Monitor
Electric Kettle 1,200 Electric Shaver 15W Desktop 100
w Computer w
Electric Oven 2,150 Extractor Fan 12W Guitar 20 W
w Amplifier
Food 400 W  Hair Dryer 1,250 Home 5W
Processor/ w Internet
Blender Router
Fryer 1,000 Iron 1,200 Home Phone 3w
w W
Induction Hob 1,400 Straightening 75 W Home Sound 95W
(Per Hob) w Iron System
Microwave 1,000 Vacuum 200 W Laptop 50 W
w Cleaner
Percolator 800 W Washing 1,150 Mi Box 5W
Machine w
Pressure 700 W Monitor 200
Cooker w
Refrigerator / 700 W Set Top Box 27 W
Freezer
Rice Cooker 200 W Television 85 W
Sandwich 700 W BEDROOM APPLIANCES VCR / DVD 100
Maker Player w
Slow Cooker 160 W  Charger (2) 20W Video Game 40 W
System
Steriliser 650 W
Toaster 850 W
Water 100 W
Dispenser
Water Filter & 70 W
Cooler

Wine Cooler 83 W
(18 Bottles)
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group 1 at a house on weekdays is presented in Fig. 6 as an example of
validation.

There are a total of 1,016 sets of data for weekdays in groupl, of
which 915 sets are used to generate stochastic occupancy in rooms. The
actual occupancy is derived from the remaining 101 sets. In Fig. 6, the
lines illustrate the occupancy patterns of the different functional rooms.
The black folded line represents a generated stochastic occupancy from
the training set and the grey folded line denotes the actual occupancy
from the test set. As Fig. 6 reveals, the training and test sets yield curves
with nearly identical trends. This similarity suggests that the stochastic
model generated on the training set is accurately capturing the under-
lying patterns and behaviours in the data.

Observing the data for different rooms, we see distinct patterns that
reflect the occupancy of people aged 8-14 in real world. It is worth
clarifying that the occupancy rate refers to the likelihood of an indi-
vidual being in different rooms once they are already at home. In the
living room, both the training and test sets show a peak in occupancy
around 6:20. The highest occupancy is observed between 14:00 and
17:00, after which there is a significant drop at 20:00. This suggests that
the living room is most frequently used in the mid to late afternoon. In
the kitchen, both data sets indicate marked increases in occupancy
during the morning, noon, and evening, respectively. This pattern likely
corresponds with meal times, demonstrating the kitchen’s role as a hub
of activity at these key points in the day. The bathroom data presents a
more random pattern, with occupancy fluctuating more unpredictably.
In the bedroom, it shows a significant decline in occupancy starting
around 6:00, with occupancy rates of less than 0.1 from noon to 20:00.
After that, there is a sharp increase to nearly 100 % occupancy and
maintained between 23:00 to 6:00. This pattern aligns with typical
sleeping hours, indicating that the bedroom is primarily used during the
night.

In the performance evaluation of the proposed model, Table 5 shows
the values of four evaluation indexes, derived from the ten-fold cross-
validation of the whole dataset. The performance of the model was
found to be satisfactory across all the rooms. Normally, a model with R?
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0.9
—o— Dtest
0.8
0.7
> 0.6
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values greater or equal to 0.7 was considered good models [51]. This
criterion suggests that the method proposed in this study exhibits a high
degree of accuracy in modelling the stochasticity inherent in occupancy
patterns. The RMSE, a measure of the model’s prediction accuracy,
yielded values close to zero across all folds. This suggests that the pro-
posed model outperform a model generated solely on the mean of the
TUS data. The MAE, a metric that quantifies the difference between the
model’s predictions and the actual data, also produced values near zero.
This implies that the proposed model’s error is minimal. The MedAE,
another measure of prediction error, yielded values close to zero, further
attesting to the model’s excellent fit. In conclusion, these indexes
collectively validate the accuracy of the proposed model.

5. Application of the method: Case study in the UK
5.1. Case study house

To validate the proposed approach towards establishing stochastic
occupant occupancy in residential buildings, we applied our method to a
typical residential building, serving as our model case study. This case
study aims to cover the occupants in all the groups we divided for the
TUS data. It pivots around a two-storey detached house, presumed to be
inhabited by a six-member family, with a room distribution that aligns
with the UK Office of National Statistics data [52]. As illustrated in
Fig. 7, it encompasses six rooms with varying functionalities, namely:
three bedrooms, one kitchen, one bathroom and one living room.

The occupants of this building are divided into three distinct age
groups: two children aged between 8 and 14 years, two young adults
aged 15-64 years, and two retirees aged over 65 years. This categori-
zation serves to provide a more detailed understanding of occupancy
patterns as influenced by age.

We further analyse the stochastic movement of these building oc-
cupants, focusing on transitions both within different rooms and be-
tween inside and outside of the house. This analysis aims to depict the
model’s ability to effectively represent these unpredictable movement

Kitchen

Dtrain

e
)

—e—Dtest

Occupancy
S L2 e 2 2 2
~ w - wn = = @

S

Occupancy
=
n

cocosossssssesse oo
SITIASTIQASTIQASTIQASTIQS TASTIASTIASTASTAQ
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Fig. 6. Comparison of a generated stochastic occupancy and an actual occupancy.
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Table 5

The value of four evaluation indexes in each function room.
Livingroom R? RMSE MAE MedAE
1-fold 0.98 0.07 0.05 0.03
2-fold 0.98 0.07 0.05 0.03
3-fold 0.97 0.06 0.06 0.04
4-fold 0.96 0.09 0.07 0.05
5-fold 0.97 0.06 0.06 0.04
6-fold 0.97 0.06 0.05 0.03
7-fold 0.96 0.07 0.07 0.05
8-fold 0.96 0.07 0.08 0.07
9-fold 0.96 0.07 0.06 0.04
10-fold 0.98 0.05 0.05 0.04
Average 0.97 0.07 0.06 0.04
Kitchen
1-fold 0.75 0.06 0.04 0.01
2-fold 0.89 0.04 0.02 0.01
3-fold 0.86 0.08 0.03 0.01
4-fold 0.80 0.09 0.03 0.02
5-fold 0.84 0.08 0.03 0.01
6-fold 0.85 0.08 0.03 0.01
7-fold 0.84 0.09 0.03 0.01
8-fold 0.88 0.10 0.03 0.01
9-fold 0.85 0.09 0.03 0.02
10-fold 0.84 0.07 0.03 0.01
Average 0.84 0.08 0.03 0.01
Bathroom
1-fold 0.80 0.03 0.02 0.01
2-fold 0.85 0.02 0.02 0.02
3-fold 0.84 0.04 0.02 0.02
4-fold 0.78 0.04 0.03 0.02
5-fold 0.83 0.04 0.02 0.02
6-fold 0.85 0.04 0.03 0.02
7-fold 0.85 0.04 0.03 0.01
8-fold 0.79 0.04 0.03 0.02
9-fold 0.77 0.05 0.03 0.02
10-fold 0.82 0.04 0.03 0.02
Average 0.82 0.04 0.03 0.02
Bedroom
1-fold 0.99 0.06 0.04 0.03
2-fold 0.99 0.05 0.05 0.02
3-fold 0.99 0.05 0.04 0.02
4-fold 0.98 0.05 0.06 0.03
5-fold 0.99 0.04 0.05 0.03
6-fold 0.99 0.04 0.04 0.02
7-fold 0.99 0.05 0.05 0.03
8-fold 0.99 0.04 0.05 0.03
9-fold 0.99 0.05 0.04 0.02
10-fold 0.99 0.04 0.03 0.02
Average 0.99 0.05 0.05 0.03

patterns. The step-by-step application of this method is detailed in Fig. 8
below. We derived the necessary input data for this case from the TUS
dataset. The calculations were performed on a desktop computer with
Intel(R) Core (TM) i9-10900 CPU @ 2.80 GHz, 32.0 GB of RAM, and
running Windows 11 Professional. The time taken to complete a single
run of the stochastic indoor occupancy pattern output was less than 1 s.
This level of computational efficiency indicates that our model can be
executed swiftly on standard modern computing hardware, enhancing
its scalability and adaptability for various research and practical
applications.

5.2. The generation of the overall occupancy in the house

To construct the transitional probability matrices of the occupancy of
the six occupants, we implemented the Markov chain Monto Carlo
method. Using the UK TUS data (2014-2015), in total 144 matrices were
built for each group, representing the transition probabilities of occu-
pants moving between inside and outside the house throughout the day,
at 10 min intervals. Fig. 9 provides an example of such a matrix for
occupants between 8 and 14 years old for the time interval from 12:00 to
12:10 noon. It reveals that, if a person (aged 8-14) was at home at 12:00,
then there is a 0.977 probability that this person will still be at home at
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12:10. Conversely, if the person is not at home at 12:00, there is a 0.047
probability that this person will return home at 12:10.

Upon applying the obtained transition probability matrices to this
case study house, we were able to derive the house’s full-day occupancy
status. We conducted three separate tests for both weekdays and
weekends, with the results presented in Fig. 10. As can be observed, each
occupancy test is different. However, due to the use of the same tran-
sition probability matrix, they bear similarities. These consistent ob-
servations across all the random simulation iterations not only
underscore the reliability of the proposed model but also attest to its
ability to effectively represent stochastic occupancy behaviours.

5.3. The generation of the occupancy for different functional spaces

Building on the findings from Section 4.2 about the overall occu-
pancy in the house, we employed a probabilistic sampling algorithm to
determine the occupancy of each functional space. This enabled us to
generate movement trajectories for occupants as shown in Fig. 11.
Occupant 1 and 2 represents individuals aged 8-14 years, occupant 3
and 4 represents individuals aged 15-64 years and occupant 5 and 6
represents individuals aged over 65 years.

Fig. 11 provides a compelling visualization of how occupancy fluc-
tuates in a household over a typical weekday. It’s crucial to clarify that
the daily trajectories illustrated are not direct empirical data gathered
from the UK TUS dataset. Instead, these trajectories are a result of a data
generation process aimed at capturing and reflecting the inherent sto-
chastic nature of occupant occupancy and movement. Each simulation,
or 'run’, exhibits its own unique pattern due to the inherent randomness
of the generation process. Nevertheless, these runs all stem from the
same probability basis for the sampling calculations. This ensures that
the occupant behaviour, although unique in each run, exhibits overall
similarity in terms of its characteristics.

A deeper look into the generated data reveals recognizable patterns.
For instance, occupants generally leave their bedrooms in the morning,
spending most of the daytime in the living room if they are home
(particularly for those aged above 65), migrate to the kitchen around
mealtimes, and return to the bedrooms in the evening.

It is important to note that the time spent in each room — the
bedroom, living room, bathroom, and kitchen — varies significantly
among occupants. These variations signify the stochastic simulation’s
effectiveness in capturing the random and unpredictable nature of
occupant movement and occupancy. The data generation process thus
successfully encapsulates the true complexity and dynamism inherent in
human behaviour within residential environments.

6. Estimation of the appliance energy consumption

To study the efficacy of the stochastic model in calculating appliance
energy consumption related to occupant behaviours, we used a typical
weekday as an example. We compared the actual data derived from the
TUS data, energy consumption calculated by the stochastic model, and
energy consumption based on the ASHRAE standard schedule.

Due to the large size of the TUS data, it was not feasible to simulate
all of it. Therefore, a random sampling method was used to select subsets
of the data for the energy calculation. We randomly selected subsets of
120 data sets from the weekday dataset across three distinct groups.
These subsets serve as representative samples, providing a snapshot of
the larger dataset. The selection process adhered to a statistical standard
of an alpha level less than 0.05, a common threshold in statistical hy-
pothesis testing that ensures a less than 5 % probability of incorrectly
rejecting the null hypothesis, thereby affirming the statistical signifi-
cance of our chosen sample sizes for large populations [53].

The distribution of energy consumption of a typical weekday for each
group is shown in boxplots in Fig. 12. Group 1, comprising individuals
aged 8-14, demonstrated an energy consumption range of 0 to 4.66 kWh
in the actual model, with a median value of 2.15 kWh. The stochastic
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Fig. 7. Different functions spaces of the case study building.
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Fig. 8. The steps for application for the method.

model for this group showed a similar range of 0 to 3.77 kWh, with a
similar median value of 1.71 kWh. Group 2, consisting of individuals
aged 15-64, exhibited an energy consumption range of 0 to 7.36 kWh in
the actual model, with a median value of 2.81 kWh. The stochastic
model for this group presented a range of 0 to 4.93 kWh, with a median
value of 2.61 kWh. For Group 3, which includes individuals aged 65 and
above, the actual model recorded an energy consumption range of 0 to
8.04 kWh, with a median of 4.09 kWh. The stochastic model for this
group showed a range of 0.87 to 5.65 kWh, with a median of 3.60 kWh.
The interquartile ranges, representing the spread of the middle 50 % of
the data, were found to be similar across all three groups. This similarity
suggests comparable variability in energy consumption between the
stochastic model and actual occupancy. The study also referenced a
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standard model, which consistently reported an energy consumption of
2.73 kWh. When compared with this standard model, the data from the
actual and stochastic models either surpassed or fell below the standard
model’s energy consumption. These findings indicate that the standard
model may not accurately represent the inherent variability in energy
consumption of appliances within residential buildings, suggesting that
a single, fixed value may not sufficiently capture the dynamic nature of
energy consumption.

7. Discussion

In the present study, we have devised a novel method capable of
reflecting the stochastic occupancy patterns in different functional
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Next state (at 12:10)
Current state (at 12:00) Absence  Presence

Absence 0.977 0.230

Presence 0.047 0.953

Fig. 9. An example transition probability matrix for occupants between Ages 8 to 14 years old at 12:00 noon.

Weekday
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2

Weekend
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2

Fig. 10. Three random examples of the case study model: Occupancy results for the whole residential buildings on weekdays and weekends.
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Fig. 11. Samples of occupancy in the house on a weekday.
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Fig. 12. Appliance energy consumption for occupants at different ages on a typical weekday.

spaces within residential buildings. The method was validated using an
extensive dataset from the UK TUS, and the results revealed a close
match between the generated activity data and the actual indoor activity
statistics of the occupants. This method not only supplements the lesser-
known methods of simulating occupancy in residential buildings [7,19],
but it also provides a more detailed simulation of occupancy by cate-
gorizing occupants by age. In section 5, we examined the application of
the model by performing appliances energy consumption calculations
using the stochastic model, the standard model, and real data. The re-
sults showed that the method was able to better reflect the stochastic
nature of occupancy behaviour.

It is important to note that the energy consumption of these appli-
ances represents only a part of the total energy consumption in resi-
dential buildings. Taking the abovementioned case study of a six-
member family in the UK as an example, we can estimate their daily
energy consumption based on the UK’s per capita daily energy usage for
heating (3.28 kWh), lighting (0.62 kWh), and hot water (0.55 kWh)
[54]. Roughly, this type of household’s daily energy consumption would
range between 28.44 and 55.40 kWh, with a median value of approxi-
mately 42.06 kWh. It is crucial to consider that these figures can vary
significantly due to external factors such as weather conditions. To more
accurately simulate the entire building’s energy consumption, the sto-
chastic occupancy data generated for each room should be integrated
into building simulation software, such as EnergyPlus, to calculate the
energy consumption of all energy-consuming devices in residential
buildings, including HVAC, lighting, domestic hot water, and appliance
usage. This comprehensive approach is our next research goal, aiming to
provide a more complete understanding of residential energy con-
sumption patterns.

Furthermore, this method facilitates the achievement of more accu-
rate predictions via a relatively simple algorithm. The proposed method
employs Markov method and probabilistic sampling method to model
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occupancy patterns, enabling the random generation of numerous data
sets that align with actual occupant activity. The true probabilities
extracted using TUS are utilised to predict occupancy, which will yield
commendable performance and facilitate the application of the pro-
posed method to real building energy simulation [18].

While this study is predicated on the UK TUS data for validation and
simulation purposes, the proposed method exhibits scalability. By
obtaining occupancy rates for different functional rooms in residential
buildings from the TUS data alone, the occupancy patterns of rooms in
residential buildings can be established. Given the availability of TUS
data in several, this method can be employed to simulate the occupancy
of residential buildings in countries with diverse living habits, and to
simulate energy consumption as well.

Furthermore, while the TUS data from 2014 to 2015 has provided a
robust foundation for our study, we must acknowledge that lifestyles
and occupancy patterns are subject to change over time. The COVID-19
pandemic, in particular, has significantly altered how residential spaces
are used, with more people working and studying from home. The
methodology and framework of our model are designed to be adaptable
and can be updated with more recent data as it becomes available.
Future research should consider updating the occupancy data to reflect
these recent lifestyle changes, ensuring the continued relevance of oc-
cupancy models in a rapidly evolving world.

8. Conclusion

The study presented herein sought to address the challenge of
accurately modelling occupancy patterns within residential buildings by
developing a stochastic occupancy model based on TUS data. The
importance of such models lies in their ability to effectively inform en-
ergy consumption simulations, which in turn aids in the design and
management of energy-efficient buildings.



R. Zhang et al.

The proposed stochastic occupancy model was verified through an
extensive ten-fold cross-validation process. The model’s performance
was evident from the similarity between the occupancy trends generated
by the model and the actual occupancy data. For the four functional
rooms — bedroom, bathroom, kitchen, and living room - the model
achieved an average R? value of 0.91, indicating a high degree of ac-
curacy. Additionally, the average RMSE, MAE, and MedAE values for
these rooms were 0.06, 0.04, and 0.03, respectively, further attesting to
the model’s precision in capturing occupancy patterns.

The model was applied to a case study of a two-story detached house
in the UK. The application incorporated an examination of occupancy
patterns in different functional spaces within the residential building
and across different age groups. It was found that the model effectively
reflects different behaviour patterns and room occupancies among oc-
cupants of different ages, as well as the resulting variations in appliance
energy consumption. For occupants aged 8-14, a typical day’s average
appliance energy consumption ranged from 0 to 3.77 kWh, with a me-
dian of 1.71 kWh. For occupants aged 15-64, the range was 0 to 4.93
kWh, with a median of 2.61 kWh. For the elderly aged over 65, the range
was 0.87 to 5.65 kWh, with a median of 3.60 kWh. These findings
highlight the variability in energy consumption and underscore the
importance of considering age-specific occupancy and behaviour pat-
terns in residential energy consumption studies.

Looking ahead, the developed stochastic occupancy data can be in-
tegrated into building simulation software like EnergyPlus. This inte-
gration will enable more detailed calculations of energy consumption for
all energy-consuming devices in residential buildings, including HVAC,
lighting, hot water and appliance usage, thereby enhancing the accuracy
and applicability of our model in real-world scenarios.

In conclusion, this research contributes a simple and stochastic
model for simulating occupancy in residential buildings. The method,
grounded in a combination of Markov chains and probabilistic sampling,
proved to be effective in generating data that closely aligns with real-
world occupancy patterns. Importantly, it is worth mentioning that
the method has the potential for scalability and can be adapted to
various contexts given the availability of TUS data in numerous coun-
tries at different times. Future research could explore the extension of
this model to other building types and the incorporation of additional
parameters such as outdoor environmental conditions or cultural dif-
ferences in occupancy patterns.
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