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A B S T R A C T   

In the context of growing concerns over energy consumption and sustainability, accurate modelling of occupancy 
patterns within residential buildings is critical. In this study, a novel stochastic occupancy model is introduced 
for simulating human behaviour within residential buildings by employing Time Use Survey (TUS) data and 
utilising Markov chains and probabilistic sampling algorithms. The novelty of this research lies in its approach to 
represent the dynamic nature of occupancy across different functional spaces and age groups, a gap not yet 
adequately addressed in existing studies. The model’s accuracy is ascertained through ten-fold cross-validation, 
achieving an average R2 value of 0.91 across key functional rooms (bedroom, bathroom, kitchen, living room), 
indicating a high degree of precision. Applied to a case study of a two-story detached house in the UK, the model 
effectively reflects varied behaviour patterns and room occupancy among different age groups. For instance, the 
average daily appliance energy consumption for occupants aged 8–14 ranged from 0 to 3.77 kWh (median 1.71 
kWh), for ages 15–64 from 0 to 4.93 kWh (median 2.61 kWh), and for over 65 from 0.87 to 5.65 kWh (median 
3.60 kWh). This model, with its scalability and accuracy in capturing the inherent randomness of human 
behaviour, is a valuable tool for improving energy consumption simulations and contributing to sustainable 
residential building design and management.   

1. Introduction 

1.1. Background 

Building energy consumption is a key parameter by which the per
formance of the indoor environment can be assessed and improved, and 
occupant behaviours are one of the drivers causing difference in build
ing energy consumption among buildings with the same function and in 
similar climatic conditions [1]. For this reason, the United States 
Department of Energy (DOE) issued Standard Building Operating Con
ditions (SBOC) in 1979 and defined occupancy schedules for 14 building 
occupancy types [2,3]. In 1989, the American Society of Heating, 
Refrigerating and Air-Conditioning Engineers (ASHRAE) issued the first 
standard occupancy schedules for nine building occupancy types based 
on the DOE SBOC standards (Fig. 1 a)), which were revised and refined 

in 2004 and 2013. Additionally, international standards such as 
prEN16798-1 and ISO 17772–1:2017 have also addressed occupant 
schedules for energy calculations (Fig. 1 b)) [4]. 

However, these occupancy schedules were based on statistical re
sults, and the descriptions of occupancy were static and simplified [5]. 
They fail to capture the temporal and spatial stochastic nature of oc
cupancy, which is critical for accurately assessing energy consumption 
in residential buildings. This limitation is particularly evident when 
considering the diversity of occupancy patterns across different regions. 
For instance, research conducted by Mitra et, al. showed that Canadians 
are on average 6.6 % less actively occupied in residential buildings than 
British [6]. Moreover, even within a single country, occupancy patterns 
can vary widely. In China, for example, the time spent in living rooms 
ranges from 10 to 11 h in Beijing to as little as 5.4 h in Yinchuan and 4.8 
h in Chengdu [7]. These variations underscore the importance of 
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developing occupancy models that can more accurately reflect the 
diverse and dynamic nature of building occupancy. 

The behaviour of occupants is one of the most important sources of 
uncertainty in predicting building energy use through modelling pro
cedures [1]. Given the diversity in individual behaviours, applying such 
oversimplified schedules in building simulation often results in a sig
nificant discrepancy between the simulated results and actual energy 
consumption. For example, Duarte et, al. carried out a study in 2013 
which showed a 46 % difference between private office and ASHRAE 
reference occupancy rates [9]. Hong et, al. found that for a typical 
single-person office room, different working styles could result in energy 
consumption varying from 50 % less to 90 % more compared to the 
standard or reference working style [1]. 

Many studies have shown that the use of occupancy information can 
save around 10 % − 40 % of a building’s energy consumption [10]. 
Erickson and Cerpa indicated that HVAC control strategies with pre
dictive and real-time occupancy monitoring via camera sensor networks 
have a potential energy saving of 20 % [11]. Peng et, al. adaptation to 
local occupancy scenarios can save 20.3 % of energy [12]. The expected 
energy use simulated using sensors to detect occupancy and sleep pat
terns in the home saves an average of 28 % of energy compared to 
existing energy simulation methods [13]. 

1.2. Occupancy models 

In recent years, researchers have done a number of studies to achieve 
accurate building occupancy estimation. Back in 2001, Macdonald and 
Strachan proposed using the Monte Carlo method to build a basic sto
chastic model as inputs to simulation tools [14]. Nowadays, some 
advanced models are proposed to randomly generate plausible building 
occupancy models. Most of the research focuses on the types of public 
buildings. For instance, Wang et, al. investigated the occupancy patterns 
in single-person offices within a large office building in San Francisco. 
Their study revealed that the vacancy intervals across the 35 single- 
person offices involved in the study were exponentially distributed. 
They demonstrated three typical occupancy models for these offices 
using non-homogeneous Poisson process simulations [15]. However, the 
findings, being limited to a single office building, raised questions about 
their universal applicability. Addressing this limitation, Page et al. 
introduced a more versatile approach using the Markov chain to simu
late occupant presence. Their algorithm, implemented in Matlab, was 
adaptable to both residential and public buildings, enabling the gener
ation of occupancy statuses (absence or presence) in various zones over 
different time series [16]. Further refining the focus on occupancy 
modelling, Wang et, al. proposed an innovative approach that included a 
basic movement module and an advanced event module. This model was 
able to simulate not only the spatial location of each occupant but also 
zone-level occupancy of the whole building [17]. Furthermore, a part of 
the research focused on the generation or prediction of typical standard 
occupancy models. Liang et, al. used data mining methods to learn and 

predict the occupancy schedule of a whole office building [18]. Happle 
et, al. used location-based services (LBS) data to create occupancy 
schedules of a retail or restaurant building use type in different cities and 
compared them with standard schedules [3]. These studies highlighted 
the potential of leveraging big data and advanced analytics in occupancy 
modelling. 

While the majority of earlier occupancy studies concentrated on 
public buildings, there has been a notable shift towards residential oc
cupancy models in recent times. This transition is characterized by the 
increasing use of national-level Time Use Survey data and the Markov 
chain as foundational methods in developing residential occupancy 
models. For instance, Richardson et, al. developed a stochastic occu
pancy model to describe the active or inactive states in the house using 
the first-order Markov–Chain technique [19]. Building on this, McKenna 
et, al. refined the approach with the first-order time-inhomogeneous 
Markov-chain technique. This optimization allowed for modelling four 
stochastic states of occupants (absent/present and active/inactive) 
within a household [20]. Buttitta and Finn applied the first-order Mar
kov–Chain technique to generate high-time resolution occupancy 
models and used them as input parameters to calculate high-time reso
lution heating load in buildings [21]. In addition to traditional survey 
data, the use of monitoring data from household devices has emerged as 
a valuable source for occupancy modelling. Huchuk et, al. utilised real 
consumer longitudinal data from the connected thermostat devices to 
predict household occupancy using different methods, including Logis
tic regression, Markov model, Random Forest, Hidden Markov model 
and Recurrent neural network. Their findings indicated that the Random 
forest algorithm outperforms the other models [22]. Causone et al. took 
a different approach by collecting energy metering data and employing 
machine learning algorithms to infer occupant-related input data [23]. 
Similarly, Diao et, al. proposed to use direct energy consumption results 
and energy time use data to identify and classify occupant behaviour 
through unsupervised clustering. Their behavioural model offered more 
accurate and reliable predictions than the ASHRAE standard schedule 
[24]. Additionally, Sayed et, al. developed a simple and effective image 
conversion technique for predicting occupancy [25]. These diverse 
methodologies highlight the evolving complexity and precision in resi
dential occupancy modelling. A detailed overview of the research 
methods applied to different types of buildings is shown in Table 1 
below. 

With the increasing emphasis on the study of human behaviour in 
buildings, many research efforts are being made to accurately capture 
occupancy patterns and behaviours. We found that some studies for 
building occupancy schedule use occupancy sensors, cameras, the pas
sive infrared (PIR) sensor, radio frequency identification (RFID) in
struments or other devices that can be used to collect occupancy data to 
achieve the purpose of obtaining occupied data and for occupancy 
prediction [10,40–42]. However, the data collected by this method is 
limited to a small sample size and is difficult to apply to the entire res
idential building due to the privacy issues involved for the occupants 

Fig. 1. A) An example of standard ASHRAE schedule for residential buildings [8] (Source: Section 13 of ASHRAE standard 90.1–1989); b) Hourly residential building 
pattern for energy calculation. 
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Table 1 
An overview of the occupancy model generation methods.  

Forecast 
object 

Method/ 
Algorithm 

Data source Description Ref. 

Commercial 
buildings 

Non- 
homogeneous 
Poisson process 
model 

Infrared sensor Proposed 
statistical 
properties of 
single-person 
office occupancy 

[15]  

Markov Chain 
Model 

Movement 
sensor 

Generated the 
occupancy status 
(absence or 
presence) of 
occupants in 
different time 
series in the 
zones 

[16]  

Homogeneous 
Markov chain 

Experience Modelled the 
location of 
occupancy and 
the building’s 
zone-level 
occupancy 

[17]  

Inhomogeneous 
Markov chain 

Real-Time 
Locating 
System (RTLS) 

Provided an 
adaptive 
probabilistic 
occupancy 
prediction model 
capturing the 
actual behaviour 
of open office 
occupants and 
zone-level 
occupants with 
high accuracy 

[26]  

Inhomogeneous 
Markov chain 

Wireless 
camera 

Offered two 
stochastic 
building 
occupancy 
models for multi- 
residential 
single-area and 
multi-area 
scenarios 
respectively 

[27]  

Data mining Sensors Provided a 
building 
occupancy 
schedule 
available in most 
office buildings 

[18]  

Generative 
Adversarial 
Network (GAN) 

Camera Introduced 
methods to build 
occupancy 
model without 
prior 
assumptions 

[28]  

Feature scaled 
extreme learning 
machine (FS-ELM) 
algorithm 

CO2 

concentration 
data 

Developed an 
occupancy 
simulator based 
on a discrete- 
time dynamic 
model of real- 
time carbon 
dioxide 
concentration 
measurements 

[29]  

Statistical 
methods 

Switch lighting 
equipment 
data 

Determined five 
typical 
occupancy 
patterns through 
analysis of 200 
open-plan offices 

[30]  

The S-curve 
method and the 
probabilistic 
methods 

Questionnaire Proposed 
prediction 
formulas of 
occurrence and 

[31]  

Table 1 (continued ) 

Forecast 
object 

Method/ 
Algorithm 

Data source Description Ref. 

frequency for 
activities inside 
and outside the 
office during the 
workday  

Adaptive neural- 
fuzzy inference 
system (ANFIS) 
model 

Sensor 
monitoring 

Estimated non- 
residential 
building 
occupancy 

[32] 

Retail or 
restaurant 
building 

Statistical method Location-based 
services (LBS) 
data 

Created a data- 
driven situation- 
specific and 
representative 
occupancy 
schedule for 
different 
building use 
types 

[3] 

Airport 
building 

The Bayesian 
model 

Wi-Fi IPS data Predicted high- 
resolution 
occupancy of the 
airport 

[33] 

Large 
exhibition 
hall 

Recurrent neural 
network (RNN) 
model with long 
short-term 
memory units 
(LSTM) 

Image sensors 
and counting 
devices 

Predicted short/ 
long-term real- 
time occupancy 
in exhibition 
events 

[34] 

Laboratory The auto- 
regressive hidden 
Markov model 
(ARHMM) 

Wireless sensor 
network 

Estimated the 
number of 
occupants in the 
laboratory 

[35] 

Residential 
buildings 

Probabilistic 
model and the 
Hierarchical 
clustering 
algorithm 

TUS and 
Household 
Budget Survey 
(HBS) 

Identified seven 
significant 
occupancy 
schedules and 
reconstructed 
individual daily 
and annual 
occupancy 

[36]  

Markov Chain 
Monte Carlo 
(MCMC) 
technique 

Time-Use 
Survey (TUS) 

Generated the 
stochastic 
occupancy 
(active/inactive) 
in the house 

[19]  

Markov Chain 
Monte Carlo 
(MCMC) 
technique 

Time-Use 
Survey (TUS) 

Modelled 
occupant’s state 
(absent/present 
and active/ 
inactive) in the 
house 

[20]  

A new Markov 
model 

Passive 
infrared 
sensors 

Predicted short- 
term occupancy 
in the buildings 

[37]  

Machine learning 
algorithms 

Smart meters Generated 
standardized 
occupancy 
profiles using the 
electricity 
records from 
smart meters 

[23]  

Logistic 
regression; 
Markov model; 

Connected 
thermostats 

Generated 
household 
occupancy 
prediction 
models; Random 
forest algorithm 
outperforms 
other models 

[22] 

Random forest; 
Hidden Markov 
model; 
Recurrent neural 
network  
Unsupervised 
clustering; First- 
order 
inhomogeneous 
Markov chain 

American Time 
Use Survey 
(ATUS) 

Identified ten 
occupant 
behaviour model 

[24] 

(continued on next page) 
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and the difficulty of installing the sensors without disturbing the occu
pants’ activities [7]. 

As occupants of residential buildings often refuse direct data 
collection by researchers or research institutions entering their homes, 
several studies attempt to investigate behaviours through indirect data 
sources. Fortunately, several countries conduct regular national-wide 
time use surveys to gather information about household time use, 
including time spent and appliance usage at home. Since 1996, The 
Japan Bureau of Statistics has conducted a time use survey in every five 
years [43]. American Time Use Survey, UK Time Use Survey (TUS) and 
other time use surveys collect the amount of time people spend sleeping, 
working at home, preparing food and other activities. This time-use data 
helps to understand household activities and can be used to roughly 
determine the locations of individuals in different rooms within the 
residential buildings. Therefore, this type of data source aids in the 
development of more accurate occupancy schedules for building 
simulations. 

2. Research aim and objectives 

In summary, several probabilistic and data-driven approaches to 
assessing occupancy levels of buildings have been established in recent 
years. However, current occupancy forecasting methods have limita
tions. First of all, most studies focus on public buildings, while there are 
relatively few studies on residential buildings. For those who focus on 
residential buildings, few have considered the occupancy of different 
functional rooms in residential buildings. Given the prevailing use of 
static schedules in building energy modelling for occupancy and the 
predominant focus on public buildings like offices in existing studies of 
occupancy schedules, this research aims to address the need for a sto
chastic occupancy model in residential buildings. By utilising extensive 
real data from TUS, this model captures the randomness of residents’ 
behaviours in residential buildings and dynamically quantifies the 
probabilities of different groups of people being present in various 
rooms at different times. It enables direct integration into building 
simulations, thereby enhancing the accuracy of simulation outcomes to 
closely align with real-world scenarios. 

3. Methodology 

The methodology employed in this study consists of three primary 
components, and an overview of the methodology is given in Fig. 2. The 
first part involves analytical processing of the TUS data. This data is 

carefully analysed and processed to extract relevant information about 
residents’ activities, their durations, and the rooms they occupy within 
residential buildings. A comprehensive examination of the TUS data 
provides insights into occupant patterns and behaviours. 

The second component utilises the extracted TUS data to construct 
probabilistic transfer matrices and generate Markov chains. These 
matrices capture the transition probabilities of occupants moving from 
one room to another within a residential building. By leveraging these 
transfer matrices, the stochastic nature of occupancy patterns over time 
can be simulated. This enables the modelling of dynamic movements of 
residents and their presence in different rooms at different time 
intervals. 

The third component involves the use of probabilistic sampling 
models. These models enable the prediction of room occupancy within a 
residential sample and the generation of occupant movements between 
various spaces. By incorporating the probabilistic sampling method, the 
inherent uncertainty and randomness in occupant behaviour are 
accommodated. 

Additionally, to validate the accuracy and reliability of our meth
odology, we employed a rigorous validation process using 10-fold cross- 
validation. The dataset was divided into ten subsets of approximately 
equal size. In each iteration, nine subsets were used for training the 
occupancy models, while the remaining subset was held out for testing. 
This process was repeated ten times, with each subset serving as the test 
set once. 

3.1. Data Description and processing 

To capture the stochastic nature of occupancy patterns in various 
rooms, it is essential to have a database that records the activities of each 
occupant with fine time granularity, such as ten-minute intervals. 
Additionally, a sufficient sample size is crucial to ensure the represen
tativeness and reliability of the data. TUS data sets from various coun
tries are ideal for this purpose as they provide detailed and 
comprehensive activity records. This study drew on data extracted from 
the UK TUS conducted in 2014–2015. The data can be downloaded from 
the Economic and Social Research Council (ESRC) website [44]. This 
large-scale household-level survey, which examined how people used 
their time, was conducted by the National Centre for Social Research 
and the Northern Ireland Statistics and Research Agency on behalf of the 
University of Oxford’s Centre for Time Use Research. The sample for the 
UK TUS comprised households from England, Scotland, Wales and 
Northern Ireland. A total of 4,238 family interviews were conducted 
with 10,208 eligible respondents. These respondents completed 16,550 
records of their daily routine, of which 16,533 contained valid data on 
their daily behaviours. The data compiled include the participants’ basic 
information, their locations and their activities. Each participant aged 8 
years and above was provided with two 24-hour schedules and 
instructed to record their activities at 10-minute intervals. 

The analysis of the TUS data reveals a spectrum of twelve typical 
activities that characterise the day-to-day life of a residential building 
occupant. These include: sleeping, eating, personal care, employment- 
related activities, studying, household and family care activities, 
voluntary work and meetings, social life and entertainment, sports and 
outdoor activities, hobbies and computing activities, mass media ac
tivities and travelling. We assume that these activities occur in one of the 
functional rooms within the building, such as the kitchen (including the 
dining room), bathroom, bedroom, living room, or occur outside of this 
building. To elaborate, during a specific 10-minute interval, an in
dividual’s change in location can be classified into one of three types: 
remaining static, transitioning from one room to another within the 
building, or moving from an outdoor location to an indoor one. For 
instance, when the occupant is engaged in eating or cooking, it is 
associated with a change in location to the kitchen from either another 
room within the building or from an outside location. Similarly, per
sonal care activities correspond to the occupant’s change of location 

Table 1 (continued ) 

Forecast 
object 

Method/ 
Algorithm 

Data source Description Ref.  

First-order 
Markov–Chain 
technique 

TUS data Generated high- 
temporal 
resolution 
occupancy 
model 

[21]  

Deep learning Sensors Developed a 
method to detect 
building 
occupancy 

[25]  

Generic data- 
driven framework 
(including 
clustering and 
changepoint 
detection (CPD)) 

Home energy 
management 
system (HEMS) 

Explored 
occupant 
patterns and 
presence 
probabilities for 
a set of 
residential 
buildings 

[38]  

Semi-Markov 
chain mode 

Smart 
thermostat 
data 

Modelled annual 
occupancy 
schedules for 
urban-scale 

[39]  
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from either inside or outside the building to the bathroom; sleep, 
employment-related and study activities correspond to the occupant’s 
change of location from either inside or outside the building to the 
bedroom, and other activities correspond to the change of location from 
either inside or outside the building to the living room. Table 2 presents 
the typical activities of occupants and their corresponding functional 
rooms. 

Predicting energy consumption patterns in residential buildings 
presents complex challenges due to the different behaviours of house
holds, which are influenced by many factors [45,46]. Therefore, this 
study considers factors that influence occupancy schedules, specifically 

focusing on the age of occupants and differentiating between weekdays 
and weekends. The amount of valid data on occupants is shown in 
Table 3, and the TUS data is classified according to age groups: 8–14 
years, 15–64 years and 65 years and above. This classification is in line 
with the standardised statistical breakdown of the UK’s age distribution 
from 2011 to 2021 as summarized by O’Neill [47]. 

3.2. The First-Order Markov–Chain Monte Carlo method 

Markov chain is a statistical method which has been widely used in 
building occupancy modelling [17,26,46]. In this study, we utilised the 

Fig. 2. Methodology flow chart.  
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Markov chain approach to construct a profile of the overall occupancy 
within a residential building. It is used to model the sequences of an 
occupant’s movements - specifically between being within or outside the 
building. We adopted the concept of ’stochastic movement’, indicating 
that the transitions of occupants between inside and outside states are 
random and unpredictable. This movement of occupants forms the 
foundation of our occupancy profile. This hypothesis allows the trans
formation of occupants between inside and outside a residential building 
to be modelled as a Markov chain process. Thus, the occupant’s subse
quent occupancy status of the residential building depends only on his/ 
her current state and a certain probability which is defined based on 
observed patterns in the data. To elaborate, in the First-Order Mar
kov–Chain Monte Carlo method, the presence of occupants at a given 
time step only depends on the presence of occupants at the previous time 
step, taking into account factors such as the hour of the day and the day 
of the week [6]. The process begins with a defined starting state. At each 
time step, a random number within the interval [0,1] is generated. The 
transition of the occupant’s state is then determined by comparing this 
random number with the probabilities indicated in the transition 
probability matrix, which links a given time step to a specific class [21]. 
This approach allows for the generation of data that accurately simulates 
the unpredictable nature of occupancy movements within residential 
spaces. 

Markov chains are stochastic processes in the state space that un
dergo transitions from one state to another. It is described in Eq. 1 that 
the state of the next stage is only related to the state of the previous stage 
and the probability of state change. 

Pr(Xn+1= x|X1 = x1,X2 = x2,⋯,Xn = xn) = Pr(Xn+1= x|Xn = xn) (1) 

For the First-Order Markov–Chain method, the previous state and the 
probabilities of the state change, which are stored in a “transition 
probability matrix (TPM) ” [19]. Transfer probabilities between states 
with more than one step are more easily calculated by means of transfer 
matrices [37]. At any time step t, the probability transition matrix is 
denoted as [24]: 

TransitionprobabilityMatrixt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P11
t P12

t

P21
t P22

t

⋯ P1n
t

⋯ P2n
t

⋮ ⋮

Pn1
t Pn2

t

⋱ ⋮

⋯ Pnn
t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(t > 1) (2) 

Where, Pij
t denotes the observed probability of transition from ac

tivity i to activity j at time step t. It is the conditional probability of 
activity j at time step t, given that activity i is at time step t − 1. The sum 
of each row in the matrix is equal to 1. Pij

t is calculates as 

Pij
t =

Oij∑m
k=1

Omk 
(3) 

where, Oij is the observed number of transitions from state i to state j, 
Omk is the observed number of transitions from state i to state k, and m is 
the number of possible states. 

The TUS data operates on a ten-minute interval basis. This means 
that a full day’s active occupancy time series data for a specific house
hold comprises 144 states. Each state signifies the likelihood of occu
pants being present in the house during each ten-minute segment. 
Consequently, 144 conversion matrices were created to represent the 
transition of the occupancy situation in the household from time i to the 
next time i + 1. The dimension of the transition probability matrix is 2 ×
2, as shown in Fig. 3. 

3.3. Probability sampling model 

In the previous section, the overall occupancy of a residential house 
was determined by the Markov chain method. However, to track the 
occupancy patterns within various functional rooms in the house, a 
more complex approach was necessary. The probability sampling model 
was developed primarily on the basis of a probability distribution map of 
historical presence which was calculated using TUS data. In this study, 
we use this model to generate occupancy of different function rooms in 
the household. Predictions are made by inverse sampling method during 
periods when individuals were present in the rooms. The algorithm for 
using probability sampling to predict presence is shown in Fig. 4. For 
each time step in the day that needs to be predicted, the occupancy 
status is determined by comparing the presence probability at that time 

Table 2 
Examples of typical activities and corresponding functional rooms.  

Activities Corresponding rooms 

Sleeping Bedroom 
Eating Kitchen (including the dining room) 
Personal care Bathroom 
Employment-related activities Living room 
Studying Living room 
Household and family care activities Living room 
Voluntary work and meetings Living room 
Social life and entertainment Living room 
Sports and outdoor activities Outdoor 
Hobbies and computing activities Living room 
Mass media activities Living room 
Travelling Outdoor  

Table 3 
Classification of sample respondents’ basic information.  

Background Groups Description Day Type Frequency Percentage (%) 

Age Group 1 8–14 years Weekday 1016  6.15    
Weekend 559  3.38  

Group 2 15–64 years Weekday 7514  45.45    
Weekend 4088  24.73  

Group 3 65 years and over Weekday 2127  12.87    
Weekend 1229  7.43  

Fig. 3. Transition probability matrix at time t.  

R. Zhang et al.                                                                                                                                                                                                                                   



Energy & Buildings 304 (2024) 113854

7

step in the profile with a random number drawn from a uniform dis
tribution. If the probability of occupancy surpasses the random number, 
the respective time step is considered as “occupied.”. This method is 
implemented using MATLAB. 

3.4. Ten-fold cross-validation 

In our study, we employ the ten-fold cross-validation method [48] to 

assess the performance across six groups defined by age and weekdays/ 
weekends. Cross-validation is widely used as a statistical method to 
evaluate generalization performance of models. This method repeatedly 
divides the data into a training set and a test set for testing and training 
respectively. Unlike a single split of the dataset into training and test 
sets, which can lead to variability in model performance, cross- 
validation provides a more stable and thorough assessment. k-fold 
cross-validation is the most common cross-validation method, where k is 

Fig. 4. Flowchart for the probability sampling model.  

Fig. 5. The procedure of ten-fold cross-validation method for Group 1 (age 8–14 years) on weekday.  
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usually 5 or 10. In k steps, a set of data is retained as a test set and the 
remaining data is used as a training set to train the model. The resulting 
k accuracy scores are averaged and the cross-validation accuracy is 
summarized into a performance metric for easy comparison [49]. 

In our case, we opt for ten-fold cross-validation. Fig. 5 illustrates the 
procedural steps involved in the ten-fold cross-validation methodology. 
The dataset is divided into ten folds, with each fold containing 10 % of 
the data as the validation set, while the remaining data serves as the 
training set. This approach allows a comprehensive evaluation of the 
performance and generalizability of the proposed methodology within 
each group. By evaluating the performance of the occupancy models 
across multiple iterations, we were able to assess their consistency and 
effectiveness in predicting room occupancy and occupant movements. 

Four evaluation indexes, R2, root mean square error (RMSE), mean 
absolute error (MAE), and median absolute error (MedAE), are used to 
verify the proposed model, the definitions are described below. 

The coefficient of determination (R2) indicates how well the pre
dicted values in a model compare to a scenario where only the mean is 
used. It is given by the formula for the sum of squared residuals as shown 
below: 

R2 = 1 −

∑n
i=1

(Ei − Êi )
2

∑n
i=1

(Ei − Ei)
2 (4) 

Ei =
1
n
∑n

i=1Ei (5) 

Where, Ei denotes the actual data of occupants, Êi denotes the 
simulation results of occupants, Ei is the is the average of the actual data, 
n is the total number of those data. 

RMSE is the mean of the square root of the error between the pre
dicted value and the true value. It quantifies the typical size of the error 
in the predictions, expressed in absolute units [18], expressed in the 
following formula: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ei − Êi )

2

n

√

(6) 

For the perfect model, RMSE is equal to zero when the predicted 
value exactly matches the true value, the larger the error, the larger the 
value. 

The Mean Absolute Error (MAE) is similar to the RMSE: 

MAE =

∑n
i=1

|Ei − Êi |

n (7) 

For the perfect model, MAE is equal to zero when the predicted value 
exactly matches the true value; the larger the error, the larger the value. 

The MedAE indicates whether the model has a systematic tendency 
to overestimate or underestimate. If the value of MedAE is 0, there is no 
population bias in the prediction method. The equation is as following 
[18]: 

MedAE = median|Ei − Êi | (8) 

3.5. Estimating energy consumption associated with energy-related 
behaviours 

To contrast the standard ARSHRA occupancy schedule with the 
stochastic occupancy model put forth in this research, we undertook a 
comparative study, with a primary focus on energy-related behaviours 
and the resultant energy consumption inherent to each schedule. The 
concept of energy-related behaviours refers to those activities that 
involve the direct use of energy. In the context of a residential setting, 
these activities encompass the operation of various household appli
ances such as televisions, washing machines, computers, microwave 
ovens and the like. In essence, each of these appliances forms part of the 

daily energy consumption profile of a household, thereby establishing a 
clear link between occupancy patterns, activities, and energy usage. 

The energy consumption of these appliances can be determined by 
[24]: 

Eappliance = Pappliance × Activityduration (9) 

where, Pappliance is the equivalent power of an active application de
vice. The power of common household appliances, as shown in Table 4 
[50], were carefully selected from a comprehensive dataset provided by 
Generatorist. This dataset compiles power consumption data from a 
variety of authoritative sources, including government websites and 
well-known generator manufacturers such as Generac, Honda, and 
Yamaha, as well as major retailers like Lowe’s, Home Depot, and Sears. 
These sources offer a mix of average and typical usage values, making 
the data robust and applicable to a wide range of residential buildings. 
In our research, we assume that when a room is occupied, the energy 
consumption can be estimated as the average energy usage of all ap
pliances within that room. Specifically, in the context of a bedroom, we 
consider the scenario where occupants primarily use the room for 
sleeping, and hence, the only appliances accounted for are two elec
tronic device chargers. 

4. Verification the stochastic occupancy model 

This section discusses in detail the accuracy of this stochastic model 
in terms of ten-fold cross-validation. The generated occupancy data for 

Table 4 
The power consumption of household appliances[50].  

KITCHEN APPLIANCES BATHROOM APPLIANCES LIVINGROOM 
APPLIANCES 

Household 
Appliances 

Watts Household 
Appliances 

Watts Household 
Appliances 

Watts 

Coffee Maker 1,000 
W 

Bathroom 
Towel Heater 

60 W Apple TV 3 W 

Cooker Hood 20 W Clothes Dryer 
(Electric) 

5,400 
W 

AV Receiver 450 
W 

Dishwasher 1,500 
W 

Curling Iron 1,500 
W 

Computer 
Monitor 

25 W 

Electric Kettle 1,200 
W 

Electric Shaver 15 W Desktop 
Computer 

100 
W 

Electric Oven 2,150 
W 

Extractor Fan 12 W Guitar 
Amplifier 

20 W 

Food 
Processor/ 
Blender 

400 W Hair Dryer 1,250 
W 

Home 
Internet 
Router 

5 W 

Fryer 1,000 
W 

Iron 1,200 
W 

Home Phone 3 W 

Induction Hob 
(Per Hob) 

1,400 
W 

Straightening 
Iron 

75 W Home Sound 
System 

95 W 

Microwave 1,000 
W 

Vacuum 
Cleaner 

200 W Laptop 50 W 

Percolator 800 W Washing 
Machine 

1,150 
W 

Mi Box 5 W 

Pressure 
Cooker 

700 W   Monitor 200 
W 

Refrigerator / 
Freezer 

700 W   Set Top Box 27 W 

Rice Cooker 200 W   Television 85 W 
Sandwich 

Maker 
700 W BEDROOM APPLIANCES VCR / DVD 

Player 
100 
W 

Slow Cooker 160 W Charger (2) 20 W Video Game 
System 

40 W 

Steriliser 650 W     
Toaster 850 W     
Water 

Dispenser 
100 W     

Water Filter & 
Cooler 

70 W     

Wine Cooler 
(18 Bottles) 

83 W      
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group 1 at a house on weekdays is presented in Fig. 6 as an example of 
validation. 

There are a total of 1,016 sets of data for weekdays in group1, of 
which 915 sets are used to generate stochastic occupancy in rooms. The 
actual occupancy is derived from the remaining 101 sets. In Fig. 6, the 
lines illustrate the occupancy patterns of the different functional rooms. 
The black folded line represents a generated stochastic occupancy from 
the training set and the grey folded line denotes the actual occupancy 
from the test set. As Fig. 6 reveals, the training and test sets yield curves 
with nearly identical trends. This similarity suggests that the stochastic 
model generated on the training set is accurately capturing the under
lying patterns and behaviours in the data. 

Observing the data for different rooms, we see distinct patterns that 
reflect the occupancy of people aged 8–14 in real world. It is worth 
clarifying that the occupancy rate refers to the likelihood of an indi
vidual being in different rooms once they are already at home. In the 
living room, both the training and test sets show a peak in occupancy 
around 6:20. The highest occupancy is observed between 14:00 and 
17:00, after which there is a significant drop at 20:00. This suggests that 
the living room is most frequently used in the mid to late afternoon. In 
the kitchen, both data sets indicate marked increases in occupancy 
during the morning, noon, and evening, respectively. This pattern likely 
corresponds with meal times, demonstrating the kitchen’s role as a hub 
of activity at these key points in the day. The bathroom data presents a 
more random pattern, with occupancy fluctuating more unpredictably. 
In the bedroom, it shows a significant decline in occupancy starting 
around 6:00, with occupancy rates of less than 0.1 from noon to 20:00. 
After that, there is a sharp increase to nearly 100 % occupancy and 
maintained between 23:00 to 6:00. This pattern aligns with typical 
sleeping hours, indicating that the bedroom is primarily used during the 
night. 

In the performance evaluation of the proposed model, Table 5 shows 
the values of four evaluation indexes, derived from the ten-fold cross- 
validation of the whole dataset. The performance of the model was 
found to be satisfactory across all the rooms. Normally, a model with R2 

values greater or equal to 0.7 was considered good models [51]. This 
criterion suggests that the method proposed in this study exhibits a high 
degree of accuracy in modelling the stochasticity inherent in occupancy 
patterns. The RMSE, a measure of the model’s prediction accuracy, 
yielded values close to zero across all folds. This suggests that the pro
posed model outperform a model generated solely on the mean of the 
TUS data. The MAE, a metric that quantifies the difference between the 
model’s predictions and the actual data, also produced values near zero. 
This implies that the proposed model’s error is minimal. The MedAE, 
another measure of prediction error, yielded values close to zero, further 
attesting to the model’s excellent fit. In conclusion, these indexes 
collectively validate the accuracy of the proposed model. 

5. Application of the method: Case study in the UK 

5.1. Case study house 

To validate the proposed approach towards establishing stochastic 
occupant occupancy in residential buildings, we applied our method to a 
typical residential building, serving as our model case study. This case 
study aims to cover the occupants in all the groups we divided for the 
TUS data. It pivots around a two-storey detached house, presumed to be 
inhabited by a six-member family, with a room distribution that aligns 
with the UK Office of National Statistics data [52]. As illustrated in 
Fig. 7, it encompasses six rooms with varying functionalities, namely: 
three bedrooms, one kitchen, one bathroom and one living room. 

The occupants of this building are divided into three distinct age 
groups: two children aged between 8 and 14 years, two young adults 
aged 15–64 years, and two retirees aged over 65 years. This categori
zation serves to provide a more detailed understanding of occupancy 
patterns as influenced by age. 

We further analyse the stochastic movement of these building oc
cupants, focusing on transitions both within different rooms and be
tween inside and outside of the house. This analysis aims to depict the 
model’s ability to effectively represent these unpredictable movement 

Fig. 6. Comparison of a generated stochastic occupancy and an actual occupancy.  
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patterns. The step-by-step application of this method is detailed in Fig. 8 
below. We derived the necessary input data for this case from the TUS 
dataset. The calculations were performed on a desktop computer with 
Intel(R) Core (TM) i9-10900 CPU @ 2.80 GHz, 32.0 GB of RAM, and 
running Windows 11 Professional. The time taken to complete a single 
run of the stochastic indoor occupancy pattern output was less than 1 s. 
This level of computational efficiency indicates that our model can be 
executed swiftly on standard modern computing hardware, enhancing 
its scalability and adaptability for various research and practical 
applications. 

5.2. The generation of the overall occupancy in the house 

To construct the transitional probability matrices of the occupancy of 
the six occupants, we implemented the Markov chain Monto Carlo 
method. Using the UK TUS data (2014–2015), in total 144 matrices were 
built for each group, representing the transition probabilities of occu
pants moving between inside and outside the house throughout the day, 
at 10 min intervals. Fig. 9 provides an example of such a matrix for 
occupants between 8 and 14 years old for the time interval from 12:00 to 
12:10 noon. It reveals that, if a person (aged 8–14) was at home at 12:00, 
then there is a 0.977 probability that this person will still be at home at 

12:10. Conversely, if the person is not at home at 12:00, there is a 0.047 
probability that this person will return home at 12:10. 

Upon applying the obtained transition probability matrices to this 
case study house, we were able to derive the house’s full-day occupancy 
status. We conducted three separate tests for both weekdays and 
weekends, with the results presented in Fig. 10. As can be observed, each 
occupancy test is different. However, due to the use of the same tran
sition probability matrix, they bear similarities. These consistent ob
servations across all the random simulation iterations not only 
underscore the reliability of the proposed model but also attest to its 
ability to effectively represent stochastic occupancy behaviours. 

5.3. The generation of the occupancy for different functional spaces 

Building on the findings from Section 4.2 about the overall occu
pancy in the house, we employed a probabilistic sampling algorithm to 
determine the occupancy of each functional space. This enabled us to 
generate movement trajectories for occupants as shown in Fig. 11. 
Occupant 1 and 2 represents individuals aged 8–14 years, occupant 3 
and 4 represents individuals aged 15–64 years and occupant 5 and 6 
represents individuals aged over 65 years. 

Fig. 11 provides a compelling visualization of how occupancy fluc
tuates in a household over a typical weekday. It’s crucial to clarify that 
the daily trajectories illustrated are not direct empirical data gathered 
from the UK TUS dataset. Instead, these trajectories are a result of a data 
generation process aimed at capturing and reflecting the inherent sto
chastic nature of occupant occupancy and movement. Each simulation, 
or ’run’, exhibits its own unique pattern due to the inherent randomness 
of the generation process. Nevertheless, these runs all stem from the 
same probability basis for the sampling calculations. This ensures that 
the occupant behaviour, although unique in each run, exhibits overall 
similarity in terms of its characteristics. 

A deeper look into the generated data reveals recognizable patterns. 
For instance, occupants generally leave their bedrooms in the morning, 
spending most of the daytime in the living room if they are home 
(particularly for those aged above 65), migrate to the kitchen around 
mealtimes, and return to the bedrooms in the evening. 

It is important to note that the time spent in each room — the 
bedroom, living room, bathroom, and kitchen — varies significantly 
among occupants. These variations signify the stochastic simulation’s 
effectiveness in capturing the random and unpredictable nature of 
occupant movement and occupancy. The data generation process thus 
successfully encapsulates the true complexity and dynamism inherent in 
human behaviour within residential environments. 

6. Estimation of the appliance energy consumption 

To study the efficacy of the stochastic model in calculating appliance 
energy consumption related to occupant behaviours, we used a typical 
weekday as an example. We compared the actual data derived from the 
TUS data, energy consumption calculated by the stochastic model, and 
energy consumption based on the ASHRAE standard schedule. 

Due to the large size of the TUS data, it was not feasible to simulate 
all of it. Therefore, a random sampling method was used to select subsets 
of the data for the energy calculation. We randomly selected subsets of 
120 data sets from the weekday dataset across three distinct groups. 
These subsets serve as representative samples, providing a snapshot of 
the larger dataset. The selection process adhered to a statistical standard 
of an alpha level less than 0.05, a common threshold in statistical hy
pothesis testing that ensures a less than 5 % probability of incorrectly 
rejecting the null hypothesis, thereby affirming the statistical signifi
cance of our chosen sample sizes for large populations [53]. 

The distribution of energy consumption of a typical weekday for each 
group is shown in boxplots in Fig. 12. Group 1, comprising individuals 
aged 8–14, demonstrated an energy consumption range of 0 to 4.66 kWh 
in the actual model, with a median value of 2.15 kWh. The stochastic 

Table 5 
The value of four evaluation indexes in each function room.  

Livingroom R2 RMSE MAE MedAE 

1-fold  0.98  0.07  0.05  0.03 
2-fold  0.98  0.07  0.05  0.03 
3-fold  0.97  0.06  0.06  0.04 
4-fold  0.96  0.09  0.07  0.05 
5-fold  0.97  0.06  0.06  0.04 
6-fold  0.97  0.06  0.05  0.03 
7-fold  0.96  0.07  0.07  0.05 
8-fold  0.96  0.07  0.08  0.07 
9-fold  0.96  0.07  0.06  0.04 
10-fold  0.98  0.05  0.05  0.04 
Average  0.97  0.07  0.06  0.04 
Kitchen     
1-fold  0.75  0.06  0.04  0.01 
2-fold  0.89  0.04  0.02  0.01 
3-fold  0.86  0.08  0.03  0.01 
4-fold  0.80  0.09  0.03  0.02 
5-fold  0.84  0.08  0.03  0.01 
6-fold  0.85  0.08  0.03  0.01 
7-fold  0.84  0.09  0.03  0.01 
8-fold  0.88  0.10  0.03  0.01 
9-fold  0.85  0.09  0.03  0.02 
10-fold  0.84  0.07  0.03  0.01 
Average  0.84  0.08  0.03  0.01 
Bathroom     
1-fold  0.80  0.03  0.02  0.01 
2-fold  0.85  0.02  0.02  0.02 
3-fold  0.84  0.04  0.02  0.02 
4-fold  0.78  0.04  0.03  0.02 
5-fold  0.83  0.04  0.02  0.02 
6-fold  0.85  0.04  0.03  0.02 
7-fold  0.85  0.04  0.03  0.01 
8-fold  0.79  0.04  0.03  0.02 
9-fold  0.77  0.05  0.03  0.02 
10-fold  0.82  0.04  0.03  0.02 
Average  0.82  0.04  0.03  0.02 
Bedroom     
1-fold  0.99  0.06  0.04  0.03 
2-fold  0.99  0.05  0.05  0.02 
3-fold  0.99  0.05  0.04  0.02 
4-fold  0.98  0.05  0.06  0.03 
5-fold  0.99  0.04  0.05  0.03 
6-fold  0.99  0.04  0.04  0.02 
7-fold  0.99  0.05  0.05  0.03 
8-fold  0.99  0.04  0.05  0.03 
9-fold  0.99  0.05  0.04  0.02 
10-fold  0.99  0.04  0.03  0.02 
Average  0.99  0.05  0.05  0.03  
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model for this group showed a similar range of 0 to 3.77 kWh, with a 
similar median value of 1.71 kWh. Group 2, consisting of individuals 
aged 15–64, exhibited an energy consumption range of 0 to 7.36 kWh in 
the actual model, with a median value of 2.81 kWh. The stochastic 
model for this group presented a range of 0 to 4.93 kWh, with a median 
value of 2.61 kWh. For Group 3, which includes individuals aged 65 and 
above, the actual model recorded an energy consumption range of 0 to 
8.04 kWh, with a median of 4.09 kWh. The stochastic model for this 
group showed a range of 0.87 to 5.65 kWh, with a median of 3.60 kWh. 
The interquartile ranges, representing the spread of the middle 50 % of 
the data, were found to be similar across all three groups. This similarity 
suggests comparable variability in energy consumption between the 
stochastic model and actual occupancy. The study also referenced a 

standard model, which consistently reported an energy consumption of 
2.73 kWh. When compared with this standard model, the data from the 
actual and stochastic models either surpassed or fell below the standard 
model’s energy consumption. These findings indicate that the standard 
model may not accurately represent the inherent variability in energy 
consumption of appliances within residential buildings, suggesting that 
a single, fixed value may not sufficiently capture the dynamic nature of 
energy consumption. 

7. Discussion 

In the present study, we have devised a novel method capable of 
reflecting the stochastic occupancy patterns in different functional 

Fig. 7. Different functions spaces of the case study building.  

Fig. 8. The steps for application for the method.  
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Fig. 9. An example transition probability matrix for occupants between Ages 8 to 14 years old at 12:00 noon.  

Fig. 10. Three random examples of the case study model: Occupancy results for the whole residential buildings on weekdays and weekends.  

Fig. 11. Samples of occupancy in the house on a weekday.  
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spaces within residential buildings. The method was validated using an 
extensive dataset from the UK TUS, and the results revealed a close 
match between the generated activity data and the actual indoor activity 
statistics of the occupants. This method not only supplements the lesser- 
known methods of simulating occupancy in residential buildings [7,19], 
but it also provides a more detailed simulation of occupancy by cate
gorizing occupants by age. In section 5, we examined the application of 
the model by performing appliances energy consumption calculations 
using the stochastic model, the standard model, and real data. The re
sults showed that the method was able to better reflect the stochastic 
nature of occupancy behaviour. 

It is important to note that the energy consumption of these appli
ances represents only a part of the total energy consumption in resi
dential buildings. Taking the abovementioned case study of a six- 
member family in the UK as an example, we can estimate their daily 
energy consumption based on the UK’s per capita daily energy usage for 
heating (3.28 kWh), lighting (0.62 kWh), and hot water (0.55 kWh) 
[54]. Roughly, this type of household’s daily energy consumption would 
range between 28.44 and 55.40 kWh, with a median value of approxi
mately 42.06 kWh. It is crucial to consider that these figures can vary 
significantly due to external factors such as weather conditions. To more 
accurately simulate the entire building’s energy consumption, the sto
chastic occupancy data generated for each room should be integrated 
into building simulation software, such as EnergyPlus, to calculate the 
energy consumption of all energy-consuming devices in residential 
buildings, including HVAC, lighting, domestic hot water, and appliance 
usage. This comprehensive approach is our next research goal, aiming to 
provide a more complete understanding of residential energy con
sumption patterns. 

Furthermore, this method facilitates the achievement of more accu
rate predictions via a relatively simple algorithm. The proposed method 
employs Markov method and probabilistic sampling method to model 

occupancy patterns, enabling the random generation of numerous data 
sets that align with actual occupant activity. The true probabilities 
extracted using TUS are utilised to predict occupancy, which will yield 
commendable performance and facilitate the application of the pro
posed method to real building energy simulation [18]. 

While this study is predicated on the UK TUS data for validation and 
simulation purposes, the proposed method exhibits scalability. By 
obtaining occupancy rates for different functional rooms in residential 
buildings from the TUS data alone, the occupancy patterns of rooms in 
residential buildings can be established. Given the availability of TUS 
data in several, this method can be employed to simulate the occupancy 
of residential buildings in countries with diverse living habits, and to 
simulate energy consumption as well. 

Furthermore, while the TUS data from 2014 to 2015 has provided a 
robust foundation for our study, we must acknowledge that lifestyles 
and occupancy patterns are subject to change over time. The COVID-19 
pandemic, in particular, has significantly altered how residential spaces 
are used, with more people working and studying from home. The 
methodology and framework of our model are designed to be adaptable 
and can be updated with more recent data as it becomes available. 
Future research should consider updating the occupancy data to reflect 
these recent lifestyle changes, ensuring the continued relevance of oc
cupancy models in a rapidly evolving world. 

8. Conclusion 

The study presented herein sought to address the challenge of 
accurately modelling occupancy patterns within residential buildings by 
developing a stochastic occupancy model based on TUS data. The 
importance of such models lies in their ability to effectively inform en
ergy consumption simulations, which in turn aids in the design and 
management of energy-efficient buildings. 

Fig. 12. Appliance energy consumption for occupants at different ages on a typical weekday.  
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The proposed stochastic occupancy model was verified through an 
extensive ten-fold cross-validation process. The model’s performance 
was evident from the similarity between the occupancy trends generated 
by the model and the actual occupancy data. For the four functional 
rooms – bedroom, bathroom, kitchen, and living room – the model 
achieved an average R2 value of 0.91, indicating a high degree of ac
curacy. Additionally, the average RMSE, MAE, and MedAE values for 
these rooms were 0.06, 0.04, and 0.03, respectively, further attesting to 
the model’s precision in capturing occupancy patterns. 

The model was applied to a case study of a two-story detached house 
in the UK. The application incorporated an examination of occupancy 
patterns in different functional spaces within the residential building 
and across different age groups. It was found that the model effectively 
reflects different behaviour patterns and room occupancies among oc
cupants of different ages, as well as the resulting variations in appliance 
energy consumption. For occupants aged 8–14, a typical day’s average 
appliance energy consumption ranged from 0 to 3.77 kWh, with a me
dian of 1.71 kWh. For occupants aged 15–64, the range was 0 to 4.93 
kWh, with a median of 2.61 kWh. For the elderly aged over 65, the range 
was 0.87 to 5.65 kWh, with a median of 3.60 kWh. These findings 
highlight the variability in energy consumption and underscore the 
importance of considering age-specific occupancy and behaviour pat
terns in residential energy consumption studies. 

Looking ahead, the developed stochastic occupancy data can be in
tegrated into building simulation software like EnergyPlus. This inte
gration will enable more detailed calculations of energy consumption for 
all energy-consuming devices in residential buildings, including HVAC, 
lighting, hot water and appliance usage, thereby enhancing the accuracy 
and applicability of our model in real-world scenarios. 

In conclusion, this research contributes a simple and stochastic 
model for simulating occupancy in residential buildings. The method, 
grounded in a combination of Markov chains and probabilistic sampling, 
proved to be effective in generating data that closely aligns with real- 
world occupancy patterns. Importantly, it is worth mentioning that 
the method has the potential for scalability and can be adapted to 
various contexts given the availability of TUS data in numerous coun
tries at different times. Future research could explore the extension of 
this model to other building types and the incorporation of additional 
parameters such as outdoor environmental conditions or cultural dif
ferences in occupancy patterns. 
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