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ABSTRACT: Although the fundamental mechanisms of atmos-
pheric new particle formation events are largely associated with
gaseous sulfuric acid monomer (SA), the parameters affecting SA
generation and elimination remain unclear, especially in coastal
areas where certain sulfur-containing precursors are abundant. In
this study, we utilized machine learning (ML) in combination with
field observations to map the link between SA and the influencing
parameters. The developed random forest (RF) model performed
well in creating simulations with an R2 of 0.90, and the significant
factors were ultraviolet, methanesulfonic acid (MSA), SO2,
condensation sink, and relative humidity in descending order.
Among the five factors, MSA served as an indicator for sulfur-
containing species from marine emissions. The black box of ML was broken to determine the marginal contribution of these five
parameters to the model output using partial dependence plots and centered-individual conditional expectation plots. These results
indicated that MSA had a positive impact on the performance of the RF model, and a co-occurring relationship was observed
between MSA and SA during the nocturnal period. Our findings reveal that sulfur-containing species emitted from the marine
environment have an impact on the formation of SA and should be considered in coastal areas.
KEYWORDS: machine learning, random forest, new particle formation, sulfuric acid, methanesulfonic acid, coastal city

1. INTRODUCTION
The frequent occurrence of new particle formation (NPF)
events promotes the formation of fine atmospheric particles,
which in turn deteriorates air quality, affects the climate
globally, and even harms human health.1−5 The gaseous
sulfuric acid dimer, formed from the sulfuric acid monomer
(SA), is frequently involved in atmospheric cluster formation,
which is also a critical initial step in NPF in various
mechanisms.6−14 Therefore, a thorough understanding of the
sources and sinks of SA is essential to understanding the basic
mechanisms governing atmospheric NPF.
SA proxies have the potential to explain the mechanisms of

SA sources and sinks. Petaj̈a ̈ et al.15 proposed the first proxy
using the SO2-OH radical process as the only source of SA and
a condensation sink (CS) as the only sink in a boreal forest
station. Mikkonen et al.16 discovered that the proxy was
enhanced by including relative humidity (RH) in the sink
term. As an additional source of SA for the proxy, Dada et al.17

incorporated the reaction of SO2 with stabilized Criegee
intermediates (sCIs). On the basis of a budget analysis of SA,
Yang et al.18 applied primary emission and dry deposition of
SA to the proxy. These initiatives have greatly improved our

understanding of SA mechanisms in diverse situations.
Although current proxy methods have been shown to estimate
SA concentrations, they cannot examine the marginal effects of
individual (or the intersection of multiple) parameters on SA.
Nevertheless, previous studies have reported that 95% of the
natural sulfur emissions from the ocean can be attributed to
dimethyl sulfide (DMS) emissions from seawater, and DMS
can be oxidized to produce SA and methanesulfonic acid
(MSA).19−21 Although sulfur emissions from the ocean must
be significant in coastal regions, no proxies or models have yet
accounted for this specific process of SA formation.
Despite the multiple SA formation mechanisms, machine

learning (ML) is a data-driven strategy that could minimize the
relationships among complex data.22,23 A decision tree-based
integrated supervised ML system called random forest (RF)
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helps identify nonlinear correlations between parameters.24,25

RF models have been successfully used in forecasting studies of
environmental pollutants, such as estimating the emission of
brake wear in PM2.5 and predicting the OH radicals near the
surface in North American cities.26,27 In this study, an RF
model was applied to simulate the SA concentration and to
examine the impacts of parameters. To clarify the influences of
single-input and multi-input feature parameters on the model
outcomes, two black-box visualization tools, partial depend-
ence plots (PDPs) and centered-individual conditional expect-
ation (c-ICE), were carefully scrutinized.28−32 The develop-
ment of ML-based models provides new perspectives for
comprehension of SA mechanisms.

2. MATERIALS AND METHODS
2.1. Field Observation and Data Collection. The

observations were carried out at the Atmospheric Environment
Observation Supersite at the Institute of Urban Environment,
Chinese Academy of Sciences, in the southeastern coastal city
of Xiamen, China (118°03′E, 24°36′N) (Figure S1 and Text
S1), during summer (from July 15 to August 23, 2022).33,34

On the basis of the 24 h backward trajectory analysis of the
HYSPLIT4 model, it can be found that the air masses during

the sampling period all originated from the ocean (Figure
S2).35

A chemical ionization atmospheric-pressure interface long
time-of-flight spectrometer (CI-APi-LTOF, Aerodyne Re-
search, Inc.) with a nitrate source was used to measure SA
and MSA. The instrument configuration details and
quantification of MSA and SA can be found in Text S2, and
this method was previously described.36 The identified peaks
for SA and MSA are shown in Figure S3. Detailed descriptions
of additional auxiliary measurements of meteorological
parameters, ultraviolet (UV) radiation, trace gases, and the
particle number size distribution are described in Text S3.
Additionally, Text S4 details the CS calculation method.
2.2. Selection of Feature Parameters and Model

Construction. On the basis of similar studies, the workflow of
the RF model employed in this research is elaborately
described in Text S5.37 First, we employed the parameters
used in previous SA proxy research and additional parameters
observed simultaneously to build the RF model. An in-depth
discussion of the potential impact of the selectable parameters
on SA and the guiding rules for selecting feature parameters
can be found in Text S6. In developing the RF model, we
selected UV, RH, SO2, CS, and MSA.

Figure 1. (a) Diurnal variation of SA (median) calculated by the three proxies, simulated by the RF model, and measured. The specific details of
the three proxies are described in Text S9. (b) Simulation performance of SA in the test data set using the RF model with five feature parameters.
The slope of the red dash line equals 1. There are 3421 valid data points in total, each of which is colored on the basis of sample point density. (c)
Importance ranking of the five selected feature parameters. (d) Performance of the RF model obtained by applying the four feature parameters
trained in addition to the MSA, where the interpretation of each metric is the same as in panel b. The slope of the red dash line equals 1.
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The Python scikit-learn package was used to train the RF
model. There were around 11 400 valid data points with a
temporal precision of 5 min. The data set was arbitrarily split
into two sections, with 30% being used to test and 70% being
used as a training set for establishing the RF model.38 We input
the test data into the RF model to obtain the simulated SA
concentration, and linear regression was employed to evaluate
the matching between the simulated and measured SA
concentration. Three metrics were used to assess the model’s
performance. A higher coefficient of determination (R2), a
lower root-mean-square error (RMSE), and a lower mean
absolute value error (MAE) imply better model performance.39

A detailed explanation of these metrics can be found in Text
S7. In addition, 10-fold cross-validation was used to confirm
the accuracy of the RF model.
2.3. Model Interpretation. We applied two distinct

approaches to perform feature importance analysis, including
the built-in interpreter of the RF model and the widely used
feature analysis technique called Shapley additive explanation
(SHAP).38,40 PDPs were used to estimate the average marginal
influence of two feature parameters on the simulated
outcome.31,41 Then, c-ICE plots were employed to obtain a
deeper understanding of the heterogeneity across observa-
tions.42 A c-ICE plot was drawn for each unique synthetic
instance of a feature parameter of interest, focusing on a
specific forecast point while keeping the values of the other
feature parameters constant. Text S8 presents the PDPs and c-
ICE plots in detail.

3. RESULTS AND DISCUSSION
3.1. General Characteristics of SA and Model

Performance. A time profile of SA and the five parameters
during the sampling period, which were utilized to build the
model, is shown in Figure S6. Similar diurnal variation
characteristics were shown in the SA concentration and UV
intensity (Figure S7), which agrees with earlier research
indicating that photochemical reactions are the primary source
of SA.15−17,43 Table S1 shows the SA and associated feature
parameter data collected during sampling in this study, as well
as data from previous works. In this study, the median SA
concentration (2.3 × 106 molecules cm−3) was higher than
those in forested and rural areas like Hyytial̈a,̈ closer to those
of some urban areas like Atlanta, and lower than those in
significantly polluted megacities like Beijing.16,17,43

The performance of the RF model established by the five
feature parameters is shown in Figure 1b and Figure S8. In the
regression results of the model test set, the simulated values
matched well with the measured values, with an R2 of 0.90, an
RMSE of 2.5 × 106 molecules cm−3, and an MAE of 1.3 × 106
molecules cm−3. In comparison, we constructed three proxies
based on the data of this study with reference to earlier
research. The specific details of these three proxies are
described in Text S9. Figure 1a displays the diurnal fluctuation
of the measured SA, the SA calculated by the three proxies, and
the SA simulated by the RF model. The performance of proxy
3 is the best among the three proxies. Compared to the three
proxies, the diurnal variation of the SA simulated by the RF
model is more similar to that of the measured values.
Interestingly, proxy 3, which considered the pathway of SO2
oxidation by sCI to SA, clearly underestimated the SA
concentrations at night. In contrast, the RF model involving
MSA reproduced well the nighttime SA concentrations. For a
comprehensive analysis of the benefits and drawbacks

associated with the three conventional proxies, along with
the RF model and the implementation of scenario analysis, see
Text S10. In summary, the performance of the ML-based SA
simulation model constructed in this study is better than that
of the traditional SA proxies. Our results also indicate that the
oxidation of sulfur-containing species from marine emissions
might play an important role in SA distribution.
3.2. Importance of Feature Parameters. Figure 1c

illustrates the importance of the five selected feature
parameters, as obtained from the built-in interpreter of the
RF model, while Figure S9 shows the importance of the same
five parameters as determined by the SHAP values; both
methods indicate the same order of importance for the
parameters: UV, MSA, SO2, CS, and RH. Via the repeated
addition of feature parameters, the consequent increase in R2
and the corresponding decrease in RMSE and MAE confirmed
the validity of the features selected for model improvement in
Figure S10. Previous studies have confirmed that solar
radiation intensity, and other parameters can indicate the
concentration of OH radicals, which is a critical parameter of
the SA proxy.15−17,43 Unexpectedly, MSA was more significant
in the RF model than SO2, the most important precursor
acknowledged for SA production in inland areas. To illustrate
the superiority of these two feature parameters, two new RF
models were built: one without SO2 and the other without
MSA, each trained with four feature parameters. As the model
without MSA [R2 = 0.84 (Figure 1d)] performed worse than
the model without SO2 [R2 = 0.88 (Figure S11)], we can
conclude that the former was more crucial than the latter for
SA simulation in this study. Compared to the model without
MSA, adding MSA to the feature parameters enhanced the
model’s simulative performance, with decreased MAE and
RMSE values and R2 increased from 0.84 to 0.90.
As shown in Figure S12, the SA:MSA ratio varied

throughout the day but remained stable from 0.34 to 0.46 at
night (20:00−04:00). The high SA:MSA ratio during the day
was consistent with the diurnal variation of UV, suggesting an
additional pathway of SA generation (likely the reaction of SO2
and OH radicals) during daytime compared to MSA. In
addition, the stable SA:MSA ratio at night indicates that SA
and MSA may have similar sources. The potential pathways for
the oxidation of DMS by OH or nitrate radicals to produce
MSA and SA are depicted in Figure S13.19 DMS undergoes
several processes to produce CH3SO2, which can then generate
SA by first decomposing to SO2 and then being oxidized to
SO3. Additionally, MSA can be formed by the reaction of
CH3SO2 with O3 or NO2 to produce CH3SO3, largely
depending on the humidity level. The scatter plot of the SA
and MSA data at night showed that high-SA events were
associated with high MSA concentrations (Figures S14 and
S15). To further probe the influence of MSA on nighttime SA
concentration, data between 20:00 and 4:00 the subsequent
day were selectively screened to construct a nocturnal RF
model. Details regarding the construction and analysis of the
nocturnal RF model are provided in Text S11. The
performance of the nocturnal RF model and the parameter
importance of MSA are elucidated in Figure S16. MSA was the
most parametrically important, and SA concentration increased
with MSA concentration. The results indicated that sulfur-
containing species emitted from the ocean might play an
important role in SA formation, which cannot be neglected in
coastal areas. However, this study was conducted at only one
coastal urban site, which is restricted in terms of observation
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site type and geographical scale. Future study regions should
be broadened to include numerous coastal urban and rural
sites with diverse meteorological circumstances.
3.3. Marginal Effects of Feature Parameters on SA

Concentration. UV was undoubtedly the most crucial factor
of SA in this study. The effects of the interaction between UV
and the other four feature parameters on SA were evaluated
using PDPs (Figure 2a−d). When the UV intensity was close
to 0, the concentration of SA was always <3.0 × 106 molecules
cm−3 regardless of the variation of the feature parameters other
than MSA (Figure 2b−d). However, the nighttime SA showed
a significant increase as the MSA concentration increased. In
particular, when the MSA concentration reached a peak at
night, the concentration of SA reached 8.0 × 106 molecules
cm−3, which might indicate a co-occurrence relationship
between MSA and SA (Figure 2a). This is yet more evidence
that oceanic emissions of sulfur-containing species had an
important impact on SA at night. When the UV intensity was
high (≥45 W m−2), the dramatic fluctuations of SA with SO2
concentration indicated that SO2 was the most important
feature parameter limiting SA concentration under a high UV
intensity (Figure 2b). Therefore, during the day, especially at
midday when solar radiation was intense, the interaction
between SO2 and OH radicals was the principal source of SA.
The application of PDPs is constrained because they do not

offer sufficient insight into the heterogeneity of the data
resulting from interactions between feature parameters.
Therefore, for each unique sample, c-ICE plots are created
for each relevant feature parameter, highlighting a specific
forecast point while holding the values of unimportant feature
parameters constant (Figure 2e−i). SA displayed a substantial
marginal increase effect with an increase in UV when the UV
intensity was <55 W m−2 (Figure 2e). Figure 2g indicates that
the concentration of SA increased with SO2 concentration up
to 4.0 ppbv. These phenomena gradually diminished there-
after, indicating that the increase in SA was positively
correlated with UV intensity or SO2 concentration until they
reached a peak. This is due to the fact that the reaction
between SO2 and OH radicals dominated SA production, but
only when one parameter increased; the other parameter
limited the SA concentration, leading to a weaker marginal

increase effect. The effect on SA dramatically increased when
the MSA concentration was >1.4 × 106 molecules cm−3

(Figure 2f). The high concentration of MSA implied the
presence of high concentrations of sulfur-containing precur-
sors, leading to a significant promotion of SA. When the RH
was low, the SA concentration increased as the RH increased
(Figure 2h). CS was the only feature parameter in this analysis
that had a negative correlation with SA (Figure 2i). This is
because, in addition to self-recommendation to form sulfuric
acid dimers, condensation by preexisting aerosol is the main
sink of SA. More SA was adsorbed on the surface of the
particulate matter as the quantity of fine particulate matter in
the atmosphere increased, increasing the contact area of SA
with the particulate matter. The tiny thresholds and marginal
effects imply that the SA concentration was minimally
impacted by CS and RH (Figure 2h, i).
To investigate the parameters affecting the distribution of

SA in a coastal city, we developed a simulation model for SA
concentration using ML based on field observations in the
coastal city of Xiamen. Compared with the traditional SA
proxies, the SA simulation model constructed on the basis of
ML had better performance, with R2 reaching 0.90. The five
feature parameters of the constructed model were UV, MSA,
SO2, CS, and RH in order of feature importance (Figure 1c).
Compared to the model without MSA (Figure 1d), the model
performance showed a significant improvement, demonstrating
sulfur-containing species from marine emissions were
important sources of SA in this study. PDPs indicated a
significant co-occurrence relationship between MSA and SA
during the night, whereas SO2 and UV intensity play a
dominant role during the day (Figure 2a−d). A persistent
marginal increasing effect of SO2 and UV on SA before
reaching a peak was revealed by the c-ICE analysis (Figure 2e−
i). Thus, sulfur-containing species originating from marine
emissions may play a role in determining nighttime SA
concentration and should be taken into account in coastal
regions. Future research should make simultaneous observa-
tions of MSA, SA, and oceanic emissions of sulfur-containing
precursors (e.g., DMS and CH3SO2) to clarify the special SA
mechanisms in coastal areas.

Figure 2.Marginal effects of feature parameters on SA concentration. (a−d) Combined impact of UV and the other four feature parameters on SA
presented using two-dimensional PDPs. The color bar represents the concentration of SA, while the axes are on a logarithmic scale. (e−i) c-ICE
curves (blue) and their averages (dashed orange) depicting the relationships among UV, MSA, SO2, RH, CS, and SA.
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