Microbes play an important role in the biotransformation of arsenic (As) speciation in various environments. Nevertheless, whether epiphytic bacteria that attached on submerged macrophytes have the potential to influence As speciation still remains unclear. In this study, sterile or nonsterile Myriophyllum verticillatum was cultured with arsenite (As(III)) or arsenate (As(V)) to investigate the impact of epiphytic bacterial community on As uptake, transformation, and efflux. Results showed that both sterile and nonsterile M. verticillatum did not display substantial As(III) oxidation, suggesting that neither M. verticillatum nor epiphytic bacterial community has the capacities of As(III) oxidation. However, sterile M. verticillatum exhibited capacity for As(V) reduction, and the presence of epiphytic bacterial community substantially enhanced the proportions of As(III) in the medium (from 39.91 to 98.44%), indicating that epiphytic bacterial community contributes significantly to As(V) reduction in the medium. The presence of epiphytic bacterial community elevated As accumulation (by up to 2.06-fold) in plants when exposed to As(V). Results also showed that epiphytic bacterial community contributed little to As(III) efflux. Quantitative PCR of As metabolism genes revealed the dominance of the respiratory As(V) reductase genes (arrA) in epiphytic bacterial community, which might play a significant role in As(V) reduction in aquatic environments. Phylogenetic analysis of the arrA genes revealed the widely distribution and diversity of As(V)-respiring bacteria. These results highlighted the substantial impact of the epiphytic bacterial community associated with submerged aquatic macrophytes on As biogeochemistry in wetland and water environments.