GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province
Spatial variation of solar energy is crucial for the estimation of the regional potential and selection of construction location. This paper presents a case study of using high resolution grid map of solar radiation combined with the other restriction factors to evaluate the comprehensive potential analysis of solar PV generation at the regional scale, in order to present a framework of decision support tool for solar energy management in a regional area. The cost of PV generation is calculated based on the geographical distribution of technical potential. Moreover, geospatial supply curve (GSC) is employed to portray the evolution of available potential of photovoltaics (PV) generation with the increase of the generation cost. By integrating the economic evaluation variables of net present value and simple payback period, grid-based economic feasibility of PV generation project is then carried out under two feed-in-tariff scenarios. Finally, total CO2 reduction potential and its spatial distribution in the study area are calculated. The results confirm that PV technology provides high potential for roof-top application and large-scale PV stations. Additionally, determining a reasonable feed-in tariff is essential for expanding the application of solar PV energy. The findings improve understanding of regional renewable energy strategies and the supply/demand assessment.